[Physics] Focusing and collimating laser light on a table top scale

laseroptics

I am looking for a summary of practical methods of focusing and collimating laser light, which I guess are contradictory objectives, or are they?

For example, when I use typical small diode lasers, even with the as-shipped collimating lens I find the beam tends to be around 1mm to 2mm in diameter, and often very irregular or speckly. I would much rather have a beam that is uniform and more like 0.1 mm, but do not know how to achieve that.

Obviously it is possible to tightly focus a laser because DVD players make a tiny spot microns in size, but this I assume is only at one particular focal length, not along the length of a beam. For my application (machining metrology) I need to have a beam that does not need to be focused, yet is as narrow as possible.

Note that this type of application operates on a table top scale, all of the illuminated areas will be between 1 inch and 3 feet or so.

What are the best practical methods of shaping a laser beam according to this need?

Best Answer

High quality, monochromatic laser beams are governed by diffraction instead of geometrical optics. Talking about rays doesn't really tell the full story. The parameter of a laser beam which expresses how well collimated it is is called the Rayleigh range, $z_R$. The units of $z_R$ are units of distance, and you can think of it roughly as 'the beam will not start to diverge significantly within $z_R$ of the smallest spot.' Interestingly, it turns out that this parameter is directly related to the smallest spot size of the laser beam, $\omega_0$. This parameter is known as the beam waist. The relationship between them is $$ z_r=\frac{\pi\omega_0^2}{\lambda}. $$ The point is; the smaller you want to make the beam, the less collimated it will be. This only gets more true if the beam is of poor quality. Just to put some numbers to it, a red laser pointer focused to a spot size of $1\,\text{mm}$ is collimated over a range of $5\,\text{m}$, but if you focus it down to a spot size of $10\,\mu\text{m}$ it will only be collimated over a range of $0.5\,\text{mm}$.

Related Question