[Physics] Difference between heat capacity and entropy

entropythermodynamics

Heat capacity $C$ of an object is the proportionality constant between the heat $Q$ that the object absorbs or loses & the resulting temperature change $\delta T$ of the object. Entropy change is the amount of energy dispersed reversibly at a specific temperature. But they have the same unit joule/kelvin like work & energy. My conscience is saying these two are different as one concerns with temperature change and other only at a specific temperature. I cannot figure out any differences. What are the differences between heat capacity and entropy?

Best Answer

https://en.wikipedia.org/wiki/Standard_molar_entropy?wprov=sfti1

$$dQ = T \ dS \tag1$$ $$dQ = C \ dT \tag2$$

Interesting, right? In $(1)$, the whole $T$ multiplies the infinitesimal $\frac{\text{J}}{\text{K}}$. In $(2)$ it's the opposite: the whole $\frac{\text{J}}{\text{K}}$ multiplies the infinitesimal $T$.

But you hinted that you knew that yourself already. Let's cut to the chase: both are different beasts entirely, just like heat and torque are not related just because they carry the same unit (joules are newton-meters, right?).

However, if you still want a defining difference between them, other than "they're just different", I'd give you this:

Entropy by itself is not useful and cannot even be measured. What is useful are changes in entropy, or how it differs from one state to the other. In this sense, it's akin to internal energy and enthalpy, for which only relative values matter. Heat capacity, on the other hand, can have its absolute value determined experimentally, and it won't depend on a reference value like entropy does. Its absolute value is immediately useful, if you will. In this sense, it's akin to pressure and specific volume, for which absolute values make sense.