[Physics] Diffeomorphism Invariance of General Relativity

diffeomorphism-invariancegeneral-relativity

I'm sorry I know this has been asked before, but I'm still a bit confused. I understand that an active diffeomorphism $\varphi:M\to M$ can be equivalently viewed as a coordinate transformation so that since the equations of general relativity are tensorial $\varphi^*g$ will be a solution to Einstein's equations if $g$ is. However I don't see how that same reasoning doesn't imply that other physical theories are diffeomorphism invariant. What's the difference between general relativity and other physical theories, like classical mechanics? Why can't diffeomorphisms be viewed as coordinate transformations in both (or am I confused?).

Best Answer

The diffeomorphism invariance of GR means we're operating in the category of natural fiber bundles, where for any bundle $Y\to X$ of geometric objects that appear in the theory, we have a monomorphism $$ \mathrm{Diff} X \hookrightarrow \mathrm{Aut} Y $$ Any diffeomorphism of space-time $X$ needs to lift to a general covariant transformation of $Y$, which are not mere coordinate transformations.

These transformations play the role of gauge transformations of GR, but are different from the gauge transformations of Yang-Mills theory: The latter are related to the inner automorphisms of the group and are vertical, ie they leave space-time alone.

I'm not sure about the naturalness of the various geometric formulations of classical mechanics - I'd be interested in that as well (but am too lazy to look into it right now).

Related Question