[Physics] Confusion in understanding the behavior of inductor in RL circuit with DC source

electric-circuitselectromagnetic-inductionelectromagnetisminductance

When we have a DC voltage source with a switch in series with $RL$ and the switch is closed at $t=0$ then it is said that current is zero initially, but the voltage across inductor is same as that of applied voltage (according to Kirchhoff voltage law) so there should be current (according to $V=L(di/dt)$) but it contradicts the initial statement so how do I understand this?

If we have only inductor I understand that current increases linearly with time but addition of resistor makes the current increase exponential, how to understand this intuitively (I understand from the equations but not theoretically (intuitively) how it is happening)?

I understand that changing current causes the induced EMF which opposes the changing current, but what I don't understand is – won't it cause the current to be constant but here it seems to contradict that changing current should be there for EMF to exist, so how do we explain that voltage is reducing to zero and current is increasing with respect to the confusion I mentioned above in inductor of $RL$ circuit (so basically I am not understanding the behavior of induced EMF in inductor)? Please provide an intuitive explanation.

I have gone through lot of questions on this site but couldn't find any answers regarding my confusion, I am stuck with this. Please help me with this.

Best Answer

When we have a DC voltage source with a switch in series with RL and the switch is closed at t=0 then it is said that current is zero initially, but the voltage across inductor is same as that of applied voltage( according to kirchhoff voltage law) so there should be current( according to v=L(di/dt) )but it contradicts the initial statement so how do I understand this?

You are right that right when we close the switch the voltage across the inductor is equal to the applied voltage. However, you are misinterpreting what a potential difference of magnitude $v=L\cdot\text di/\text dt$ means. This equation doesn't say if there is a potential difference across the inductor then there is current through the inductor. What it says is that a potential difference across the inductor is associated with a change in current through the inductor. Therefore, since the voltage across the inductor is non-zero at $t=0$, we know the current is changing at $t=0$.

...but addition of resistor makes the current increase exponential , how to understand this intuitively (I understand from the equations but not theoretically how it is happening)?

The current increases like $$i=i_0\left(1-e^{-t/\tau}\right)$$ So it is increasing, and there is an exponential function, but usually "increasing exponentially" means it keeps growing and growing more rapidly without bound. This is not what is happening here.

As the current in the circuit increases the voltage across the resistor increases. Therefore, the voltage across the inductor decreases. Based on our previous discussion, this means that the change in current must be decreasing. Hence this "voltage trade-off" happens at a slower and slower rate. This causes the current to approach a steady value where the increase over time decays exponentially.

I understand that changing current causes the induced EMF which opposes the changing current, but what I don't understand is - won't it cause the current to be constant...

Keep in mind that "oppose" does not mean "block".

Everything else...

It seems like your confusion stems from what we discussed initially. You are mixing up the current and its derivative. The voltage across the inductor tells you nothing about the current in general. It tells you how the current is changing.

Also, you say that you understand things from the equations, but I would argue that if you don't understand how the equations model reality then you haven't truly understood the equations. It would help for you to look at how the equations are derived. Make sure you understand the physical significance and motivation for each step, each equation, etc. This is an important step in the learning process, so I will leave that job to you.

I hope this answer is a good scaffold to hold up the deeper understanding you will develop here.

Related Question