[Physics] Conformal transformation/ Weyl scaling are they two different things? Confused!

conformal-field-theorycoordinate systemsdifferential-geometrymetric-tensorscale-invariance

I see that the weyl transformation is $g_{ab} \to \Omega(x)g_{ab}$ under which Ricci scalar is not invariant. I am a bit puzzled when conformal transformation is defined as those coordinate transformations that effect the above metric transformation i.e
$x \to x' \implies g_{\mu \nu}(x) \to g'_{\mu \nu}(x') = \Omega(x)g_{\mu \nu }(x)$. but any covariant action is clearly invariant under coordinate transformation? I see that what we mean by weyl transformation is just changing the metric by at a point by a scale factor $\Omega(x)$. So my question is why one needs to define these transformations via a coordinate transforms. Is it the case that these two transformations are different things. In flat space time I understand that conformal transformations contain lorentz transformations and lorentz invariant theory is not necessarily invariant under conformal transformations. But in a GR or in a covariant theory effecting weyl transformation via coordinate transformations is going to leave it invariant. Unless we restrict it to just rescaling the metric?

I am really confused pls help.

Best Answer

The Weyl transformation and the conformal transformation are completely different things (although they are often discussed in similar contexts).

A Weyl transformation isn't a coordinate transformation on the space or spacetime at all. It is a physical change of the metric, $g_{\mu\nu}(x)\to g_{\mu\nu}(x)\cdot \Omega(x)$. It is a transformation that changes the proper distances at each point by a factor and the factor may depend on the place – but not on the direction of the line whose proper distance we measure (because $\Omega$ is a scalar).

Note that a Weyl transformation isn't a symmetry of the usual laws we know, like atomic physics or the Standard Model, because particles are associated with preferred length scale so physics is not scale invariant.

On the other hand, conformal transformations are a subset of coordinate transformations. They include isometries – the genuine geometric "symmetries" – as a subset. Isometries are those coordinate transformations $x\to x'$ that have the property that the metric tensor expressed as functions of $x'$ is the same as the metric tensor expressed as functions of $x$. Conformal transformations are almost the same thing: but one only requires that these two tensors are equal functions up to a Weyl rescaling.

For example, if you have a metric on the complex plane, $ds^2=dz^* dz$, then any holomorphic function, such as $z\to 1/z$, is conformally invariant because the angles are preserved. If you pick two infinitesimal arrows $dz_1$ and $dz_2$ starting from the same point $z$ and if you transform all the endpoints of the arrows to another place via the transformation $z\to 1/z$, then the angle between the final arrows will be the same. Consequently, the metric in terms of $z'=1/z$ will be still given by $$ ds^2 = dz^* dz = d(1/z^{\prime *}) d (1/z') = \frac{1}{(z^{\prime *}z')^2} dz^{\prime *} dz' $$ which is the same metric up to the Weyl scaling by the fraction at the beginning. That's why this holomorphic transformation is conformal, angle-preserving. But a conformal transformation is a coordinate transformation, a diffeomorphism. The Weyl transformation is something else. It keeps the coordinates fixed but directly changes the values of some fields, especially the metric tensor, at each point by a scalar multiplicative factor.

Related Question