Special Relativity – How to Combine Two Lorentz Boosts

inertial-frameslorentz-symmetryspecial-relativity

Is it possible to express two Lorentz boosts $A_x(\beta)$ and $A_y(\beta)$ along the x/y-axis as one boost described by $A(\overrightarrow \delta)$?

To answer this, I start by defining $\theta \equiv \arctan\left(\beta\right)$ and $\beta \equiv v/c ,$ then:
$$
\begin{align}
A_x(\beta) &= \begin{bmatrix} \cosh(\theta) & \sinh(\theta) & 0 \\ \sinh(\theta) & \cosh(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}\\[10px]
A_y(\beta) &= \begin{bmatrix} \cosh(\theta) & 0 & \sinh(\theta) \\ 0 & 1 & 0 \\ \sinh(\theta) & 0 & \cosh(\theta) \end{bmatrix} \\[10px]
A(\overrightarrow \delta) &= \begin{bmatrix}\gamma & \gamma \delta^1 & \gamma \delta^2 \\ \gamma \delta^1 & 1+B_{11} & B_{12} \\ \gamma \delta^2 & B_{21} & 1+B_{22} \end{bmatrix} \\[10px]
B_{ij} &= \frac{\gamma -1}{\delta^2}\beta_i\delta_j
\end{align}
$$

I first calculated:
$$
A_y(\beta)*A_x(\beta)
=
\begin{bmatrix} \cosh^2(\beta) & \cosh(\beta)*\sinh(\beta) & \sinh(\beta) \\ \sinh(\beta) & \cosh(\beta) & 0 \\ \cosh(\beta)* \sinh(\beta) & \sinh^2(\beta) & \cosh(\beta) \end{bmatrix}
$$

then since $B_{ij}=B_{ji} ,$ I get
$$
\sinh^2\left(\theta\right) = 0
\quad\Rightarrow\quad
\theta=0
\quad\Rightarrow\quad
v=0
\,.
$$

That would mean, that it is not possible to express two subsequent boosts in $x\text{-}$ and $y\text{-}$ direction as a combined boost. This does seem a bit odd to me and I wonder if I made a mistake in my computation.

Best Answer

It is not possible. Two boosts are, however, equivalent to one boost combined with one rotation! This surprising rotation is known as a Thomas-Wigner rotation.

This rotation arises because two infinitesimal boosts do not commute; their commutator is an infinitesimal rotation. In terms of rotation generators $J_i$ and boost generators $K_i$, the Lorentz algebra is

$$[J_i,J_j]=\epsilon_{ijk}J_k$$ $$[K_i,K_j]=-\epsilon_{ijk}J_k \,\text{(!)}$$ $$[J_i,K_j]=\epsilon_{ijk}K_k$$

Related Question