Vectors in Kinematics – Can a Vector Be Divided by Another Vector?

accelerationdifferentiationkinematicsmathematicsvectors

My physics teacher told us that we can’t divide vectors, that vector division has no physical meaning or significance. How about this: $$a = vdv/dx.$$
It says acceleration vector equals velocity (as a function of $x$) times $dv$ ‘divided’ by $dx$.

Here both $dv$ and $dx$ are vectors. How do I make sense of it? Because vector division doesn’t exist in physics right?

Best Answer

The statement $a = v (dv/dx)$ only holds in that form for one-dimensional motion, where the quantities $v$ and $x$ are just numbers rather than vectors. It follows from the chain rule, if we view $v$ as a function of $x$ instead of as a function of $t$: $$ a = \frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = \frac{dv}{dx} v. $$

If you're doing 2-D or 3-D motion, you can still do something similar, but you have to let $\vec{v}$ be a function of $x$, $y$, and $z$, since $\vec{v}$ can change as each of these quantities changes. This means that you need to use multi-variable calculus to write out an equivalent statement. For example, we have $$ a_x = \frac{dv_x}{dt} = \frac{\partial v_x}{\partial x} \frac{dx}{dt} + \frac{\partial v_x}{\partial y} \frac{dy}{dt} + \frac{\partial v_x}{\partial z} \frac{dz}{dt} \\= \frac{\partial v_x}{\partial x} v_x + \frac{\partial v_x}{\partial y} v_y + \frac{\partial v_x}{\partial z} v_z. $$ As you can see, we're never "dividing by" the entire vector $\vec{x}$ when we take these derivatives; we only ever "divide by" its components $x$, $y$, or $z$, which is a valid mathematical operation.

Related Question