[Physics] Bogoliubov transformation for bosons (matrix calculation)

bosonsmany-bodyquantum mechanics

I'd like to know if there is a general numerical method of diagonalizing the bosonic quadratic Hamiltonian below

$$H=\sum_{i,j=1}^NT_{ij}b_i^\dagger b_j+\frac{1}{2}\sum_{i,j=1}^N\left(U_{ij}b_i^\dagger b_j^\dagger+U_{ij}^*b_ib_j\right)\!,$$

using the Bogoliubov transformation, where $T$ is an $N\times N$ Hermitian matrix and $U$ is $N\times N$ symmetric but can in general be complex. One may rewrite $H$ in $2N\times 2N$ matrix form

$$H=\frac{1}{2}\begin{pmatrix}
b^\dagger & b
\end{pmatrix}\begin{bmatrix}
T & U\\
U^* & T^*
\end{bmatrix}\begin{pmatrix}
b\\ b^\dagger
\end{pmatrix}+\mathrm{const},$$

where $b=(b_1,b_2,\ldots,b_N)$ is the vector of bosonic annihilation operators. The main challenge is that the Bogoliubov transformation for bosons

$$\begin{pmatrix}
b\\b^\dagger
\end{pmatrix}=\begin{bmatrix}
M & N\\
N^* & M^*
\end{bmatrix}\begin{pmatrix}
\xi \\ \xi^\dagger
\end{pmatrix}$$

is not unitary, but simplectic, as has been discussed in many similar questions. To preserve the bosonic commutation relations of $[b,b^\dagger]$ and $[\xi,\xi^\dagger]$, the transformation matrix satisfies

$$\begin{pmatrix}
M & N\\
N^* & M^*
\end{pmatrix}\begin{bmatrix}
I & 0\\
0 & -I
\end{bmatrix}\begin{pmatrix}
M^\dagger & N^T\\
N^\dagger & M^T
\end{pmatrix}=\begin{bmatrix}
I & 0\\
0 & -I
\end{bmatrix}\!.$$

For fermions, $-I\,$ becomes $I$ and the transformation matrix is unitary. So is there a general numerical procedure to find the bosonic Bogoliubov transformation that diagonalizes $H$ into

$$H=\frac{1}{2}\begin{pmatrix}
\xi^\dagger & \xi
\end{pmatrix}\begin{bmatrix}
\Gamma & 0\\
0 & \Gamma
\end{bmatrix}\begin{pmatrix}
\xi \\ \xi^\dagger
\end{pmatrix}+\mathrm{const},$$

where $\Gamma$ is real-diagonal?

Best Answer

Self answer:

We start with a simple identity $$\begin{bmatrix} I & 0\\ 0 & -I \end{bmatrix}\begin{pmatrix} M^\dagger & N^T\\ N^\dagger & M^T \end{pmatrix}\begin{bmatrix} I & 0\\ 0 & -I \end{bmatrix}=\begin{pmatrix} M^\dagger & -N^T\\ -N^\dagger & M^T \end{pmatrix}\!.\quad(*)$$ Then the symplectic condition that the canonical transformation matrix satisfies can be rewritten as $$\begin{pmatrix} M & N\\ N^* & M^* \end{pmatrix}\begin{pmatrix} M^\dagger & -N^T\\ -N^\dagger & M^T \end{pmatrix}=\begin{bmatrix} I & 0\\ 0 & I \end{bmatrix}\!.$$ Therefore, we see the transformation matrix and its inverse multiplied together to get the identity matrix. Plugging the transformation into the Hamiltonian, we obtain $$\begin{pmatrix} M^\dagger & N^T\\ N^\dagger & M^T \end{pmatrix}\begin{bmatrix} T & U\\ U^* & T^* \end{bmatrix}\begin{pmatrix} M & N\\ N^* & M^* \end{pmatrix}=\begin{bmatrix} \Gamma & 0\\ 0 & \Gamma \end{bmatrix}\!.$$ We now use again the equation $(*)$ to obtain $$\begin{bmatrix} I & 0\\ 0 & -I \end{bmatrix}\begin{pmatrix} M^\dagger & -N^T\\ -N^\dagger & M^T \end{pmatrix}\begin{bmatrix} I & 0\\ 0 & -I \end{bmatrix}\begin{bmatrix} T & U\\ U^* & T^* \end{bmatrix}\begin{pmatrix} M & N\\ N^* & M^* \end{pmatrix}=\begin{bmatrix} \Gamma & 0\\ 0 & \Gamma \end{bmatrix}\!,$$ which then simplifies to $$\begin{pmatrix} M^\dagger & -N^T\\ -N^\dagger & M^T \end{pmatrix}\begin{bmatrix} T & U\\ -U^* & -T^* \end{bmatrix}\begin{pmatrix} M & N\\ N^* & M^* \end{pmatrix}=\begin{bmatrix} \Gamma & 0\\ 0 & -\Gamma \end{bmatrix}\!,$$ and hence we have $$\begin{bmatrix} T & U\\ -U^* & -T^* \end{bmatrix}=\begin{pmatrix} M & N\\ N^* & M^* \end{pmatrix}\begin{bmatrix} \Gamma & 0\\ 0 & -\Gamma \end{bmatrix}\begin{pmatrix} M^\dagger & -N^T\\ -N^\dagger & M^T \end{pmatrix}\!.$$ By diagonalizing the non-Hermitian matrix on the left-hand side (which equals $\mathrm{diag}(I,-I)$ times the Hamiltonian), we obtain the transformation matrix whose columns are the eigenvectors of the non-Hermitian matrix.

Related Question