[Physics] About the proof of the subadditivity of the von Neumann entropy

density-operatorentropyhomework-and-exercisesquantum-informationtrace

I'm trying to understand the proof of the so called subadditivity of the von Neumann entropy,
$$S(\rho^{AB}\,)\leq{S}(\rho^A)+S(\rho^B)$$ where $S(\rho)=-\mathrm{tr}\{\rho\log\rho\}$.

In the proof I have, I'm given the definition of relative entropy
$$S(\rho\|\sigma)=-S(\rho)-\mathrm{tr}\rho\ln\sigma$$ and the property $S(\rho\|\sigma)\geq0$; then with $\rho=\rho^{AB}$ and $\sigma=\rho^A\otimes\rho^B$ it argues that it follows that
$$S(\rho^{AB})\leq-\mathrm{tr}\left[\rho^{AB}(\ln\rho^A+\ln\rho^B)\right]=S(\rho^A)+S(\rho^B)$$
but I can't reproduce this explicitly; as I understand, writing everything out this means
\begin{align}S(\rho^{AB})\leq&-\mathrm{tr}\left[\rho^{AB}\ln(\rho^A\otimes\rho^B\right]\\&=-\mathrm{tr}\left[\rho^{AB}\left\{\ln(\rho^A\otimes{I}^B)+\ln(I^A\otimes\rho^B)\right\}\right]\\
&=-\mathrm{tr}\left[\rho^{AB}\left(\ln\rho^A\otimes{I}^B+I^A\otimes\ln\rho^B\right)\right]\\
&=-\mathrm{tr}\left[\rho^{AB}(\ln\rho^A\otimes{I}^B)\right]-\mathrm{tr}\left[\rho^{AB}(I^A\otimes\ln\rho^B)\right]\end{align}
so specifically, if this is right, I don't understand how
$$S(\rho^{A})\stackrel{?}{=}-\mathrm{tr}\left[\rho^{AB}(\ln\rho^A\otimes{I}^B)\right]$$ and similarly for $S(\rho^B)$.

Best Answer

The short version of your question is

Why is $\mathrm{tr}_{AB}(X_{AB}(Y_A\otimes I_B)) = \mathrm{tr}_A(X_AY_A)$, where $X_A=\mathrm{tr}_B(X_{AB})$ is the partial trace of $X_{AB}$ over $B$.

It should be immediate that this implies what you ask.

To prove it, you just need the definition of the partial trace: $$ \mathrm{tr}_B(Z_{AB}) = \sum_B \langle i|_B Z_{AB}|i\rangle_B\ , $$ and the fact that $\mathrm{tr}_{AB}(Z)=\mathrm{tr}_A(\mathrm{tr}_B(Z))$.

Related Question