Angular Momentum – How Does the Inertia Tensor Vary When a Rigid Body Rotates in Space?

angular momentumangular velocitymoment of inertiareference framesrigid-body-dynamics

The inertia tensor is clearly constant the in a frame moving with the rigid body. But what is the simplest way to see why its columns can be considered rotating vectors in space with the angular velocity of the rotating rigid body?

Best Answer

This has been answered below, but consider the rotation matrix $\mathrm{R}$ whose columns represent the local $\hat{x}$, $\hat{y}$ and $\hat{z}$ axis in the world coordinates.

$$ \mathrm{R} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \end{vmatrix}\tag{1}$$

This defines the changing inertia tensor from the local inertia tensor $\mathcal{I}_{\rm body}$

$$ \mathcal{I} = \mathrm{R}\, \mathcal{I}_{\rm body} \mathrm{R}^\top \tag{2}$$

Now that rate of change of the rotation matrix is by definition described by the derivative on a rotating frame

$$ \begin{aligned} \frac{\rm d}{{\rm d}t} \boldsymbol{\hat{x}} & = \boldsymbol{\omega} \times \boldsymbol{\hat{x}} \\ \frac{\rm d}{{\rm d}t} \boldsymbol{\hat{y}} & = \boldsymbol{\omega} \times \boldsymbol{\hat{y}} \\ \frac{\rm d}{{\rm d}t} \boldsymbol{\hat{z}} & = \boldsymbol{\omega} \times \boldsymbol{\hat{z}} \\ \end{aligned}$$

or the shorthand rotation $$\dot{\mathrm{R}} = \boldsymbol{\omega} \times \mathrm{R} \tag{3}$$

Now the rate of change of the inertia tensor is the time derivative of (2) and the product rule

$$\require{cancel} \begin{aligned}\dot{\mathcal{I}} & =\mathrm{\dot{R}}\,\mathcal{I}_{{\rm body}}\mathrm{R}^{\top}+\mathrm{R}\,\cancel{\dot{\mathcal{I}}_{{\rm body}}}\mathrm{R}^{\top}+\mathrm{R}\,\mathcal{I}_{{\rm body}}\dot{\mathrm{R}}^{\top}\\ & =\left(\boldsymbol{\omega}\times\mathrm{R}\right)\,\mathcal{I}_{{\rm body}}\mathrm{R}^{\top}+\mathrm{R}\,\mathcal{I}_{{\rm body}}\left(\boldsymbol{\omega}\times\mathrm{R}\right)^{\top}\\ & =\boldsymbol{\omega}\times\left(\mathrm{R}\,\mathcal{I}_{{\rm body}}\mathrm{R}^{\top}\right)-\mathrm{R}\,\mathcal{I}_{{\rm body}}\mathrm{R}^{\top}\left(\boldsymbol{\omega}\times\right)\\ & =\boldsymbol{\omega}\times\mathcal{I}-\mathcal{I}\,\boldsymbol{\omega}\times \end{aligned} \tag{4}$$

with the slight of hand notation $\omega \times$ meaning worry about the cross product later when the tensor is acted upon a vector.

So to derive the equations of motion from the change in angular momentum $\boldsymbol{L} = \mathcal{I} \boldsymbol{\omega}$ you

$$ \tfrac{{\rm d}}{{\rm d}t}\left(\mathcal{I}\boldsymbol{\omega}\right)=\mathcal{I}\dot{\boldsymbol{\omega}}+\left(\boldsymbol{\omega}\times\mathcal{I}-\mathcal{I}\boldsymbol{\omega}\times\right)\boldsymbol{\omega}=\mathcal{I}\dot{\boldsymbol{\omega}}+\boldsymbol{\omega}\times\mathcal{I}\boldsymbol{\omega}-\mathcal{I}\left(\cancel{\boldsymbol{\omega}\times\boldsymbol{\omega}}\right) \tag{5} $$