Different notation for maxwell equations

maxwell-equations

I found in a book the Maxwell equations written in a form different that other books and wikipedia,

\begin{align}
\nabla\cdot E &=\frac{\rho}{\epsilon_0}\\
\nabla\cdot B &=0\\
\nabla \times E &=\frac{\partial B}{\partial t}\\
\nabla \times B &=-\frac{1}{c^2}\frac{\partial E}{\partial t}+\frac{1}{\epsilon_0 c^2}J
\end{align}

Instead of what normally we see,
\begin{align}
\nabla\cdot E &=\frac{\rho}{\epsilon_0}\\
\nabla\cdot B &=0\\
\nabla \times E &=-\frac{\partial B}{\partial t}\\
\nabla \times B &=\frac{1}{c^2}\frac{\partial E}{\partial t}+\frac{1}{\epsilon_0 c^2}J
\end{align}

What meaning have this? And are they equivalent in some form? Or could this book have some error?

Best Answer

These equations are wrong. Among other things, they do not obey charge conservation, since according to them $$ \begin{align*} \vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{B}\right) &=-\frac{1}{c^2}\vec{\nabla} \cdot \left( \frac{\partial \vec{E}}{\partial t}\right) +\frac{1}{\epsilon_0 c^2} \vec{\nabla} \cdot \vec{J} \\ 0 &= -\frac{1}{c^2}\frac{\partial }{\partial t}\left(\vec{\nabla} \cdot \vec{E}\right) +\frac{1}{\epsilon_0 c^2} \vec{\nabla} \cdot \vec{J} \\ &= \frac{1}{\epsilon_0 c^2} \left( -\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} \right) \end{align*} $$ This would imply that $\partial \rho/\partial t = \vec{\nabla} \cdot \vec{J}$, which would mean (for example) that the charge density in a particular region of space would increase when a positive current flowed out of it.

Related Question