Jaynes-Cummings Model – Density Matrix Element in Jaynes-Cummings Model

density-operatorquantum mechanicsquantum-opticssecond-quantizationtwo-level-system

In the Jaynes-Cummings model, when using the density matrix to describe mixed states for the atom-field system, after some calculations I got to this matrix element:

$$ \rho_{ee}^A = \sum_{n=0}^{\infty} \left\langle n \right| \hat{C}(t) \hat{\rho}^F(0) \hat{C}(t) \left| n \right\rangle $$

where:

$$ \hat{C}(t) = \cos \left( \lambda t \sqrt{ \hat{a} \hat{a}^{\dagger}}\right)$$

Now, I'm supposed to arrive at:

$$ \rho_{ee}^A = \sum_{n=0}^{\infty} \left\langle n \right| \hat{\rho}^F(0) \left| n \right\rangle \cos^2(\lambda t \sqrt{n+1}) \hspace{0,8cm} (1)$$

but dont know how to. I tried:

$$ \cos \left( \lambda t \sqrt{ \hat{a} \hat{a}^{\dagger}}\right) = \sum_{m=0}^{\infty} \frac{(-1)^m (\lambda t )^{2m}}{2m!} (\hat{a} \hat{a}^{\dagger})^m$$

but:

$$ (\hat{a} \hat{a}^{\dagger})^m \left| n \right\rangle = \frac{(n+m)!}{n!} \left| n \right\rangle $$

and I don't know how to get to: $\cos^2(\lambda t \sqrt{n+1})$. How do I do this?

Best Answer

$$ \hat{a} \hat{a}^{\dagger}\left| n \right\rangle = (n+1) \left| n \right\rangle $$ let $$\hat{n}= \hat{a} \hat{a}^{\dagger}$$ so we have; $$B=\cos \left( \lambda t \sqrt{ \hat{a} \hat{a}^{\dagger}}\right)\left| n \right\rangle = \cos \left(\lambda t \hat{n}^{1/2}\right)\left| n \right\rangle =\sum_m (\lambda t)^{2m} \hat{n}^{m}/(2m!)\left| n \right\rangle =\sum_m (\lambda t)^{2m} (n+1)^{m}/(2m!)\\=\cos(\lambda t\sqrt{n+1})$$ you have B^2 in you case so QED.

We really do not need this fuss in general if you have a function of an operator and hit it to arguments eigenvector you just replace the operator in the argument with its eigenvalue. This can be shown with Taylor series for any nice function generally here we did for cos

Related Question