MATLAB: What I should do—–second order variable coefficients ODE?

odeode45second order ode

Hi, matlab person,I have some problems about second order variable coefficients ODE.
Thank you very much for any suggestion or help.
equation: x^2 y''+x y'-sin(y)cos(y)+4*k/pi*x sin(y)^2-x^2 sin(y)cos(y)=0
boundary condition: y(0)=0;y'(0)=-0.126
The following is my code, but there are several problem:
first defining function *********************************************
function yprime = skyrmion(x,y)
k=0.95;
yprime = [y(2); -1/x*y(2)+1/x^2*sin(y(1))*cos(y(1))-4*k/pi* (1/x)*sin(y(1))^2+sin(y(1))*cos(y(1))];
*********************************************************
Then transfer function
*****************************************************
xspan=[0.01,10];
y0=[-0.126;pi];
[x,y]=ode45('skyrmion',xspan,y0);
plot(x(:),y(:,2))
****************************************************
problem one:
Because The ODE was divided by x^2, so the x span can't use x==0. whether the code can be modified to not divide x^2.
problem two:
the results get by using my code are not consist with some papers.
so I want to know my code is right or wrong.

Best Answer

Your initial equation:
x^2 y''+x y'-sin(y)cos(y)+x sin(y)^2-x^2 sin(y)cos(y)=0
does not contain the ‘-4*k*pi’ term that appears in your second one:
yprime = [y(2); -1/x*y(2)+1/x^2*sin(y(1))*cos(y(1)) -4*k/pi * (1/x)*sin(y(1))^2+sin(y(1))*cos(y(1))];
So should
-4*k*pi
be
-4*k*pi/x^2
instead?
I found no other problems with your conversion of the first equation to your ‘yprime’ matrix expression. You could simplify it a bit by combining the ‘sin(y)*cos(y)’ terms to ‘(1+1/x^2)*sin(y)*cos(y)’ but I doubt that would make much of a performance difference.
I believe ‘ode45’ will avoid the singularity at x=0 on its own, and search for solutions elsewhere. If you want to be certain about this, contact TMW Tech Support and ask them.
Related Question