MATLAB: Index in position 2 exceeds array bounds (must not exceed 13). , code to operate an IEEE 14/30 bus im looking into using WLS method. added a few details in order to plot the estimated vs real data. cannot work. please help!

arrayasksweighted least square method

% Power System State Estimation using Weighted Least Square Method..
num = 30; % IEEE – 14 or IEEE – 30 bus system..(for IEEE-14 bus system replace 30 by 14)…
ybus = ybusppg(num); % Get YBus..
zdata = zdatas(num); % Get Measurement data..
bpq = bbusppg(num); % Get B data..
nbus = max(max(zdata(:,4)),max(zdata(:,5))); % Get number of buses..
type = zdata(:,2); % Type of measurement, Vi – 1, Pi – 2, Qi – 3, Pij – 4, Qij – 5, Iij – 6..
z = zdata(:,3); % Measuement values..
fbus = zdata(:,4); % From bus..
tbus = zdata(:,5); % To bus..
Ri = diag(zdata(:,6)); % Measurement Error..
V = ones(nbus,1); % Initialize the bus voltages..
del = zeros(nbus,1); % Initialize the bus angles..
E = [del(2:end); V]; % State Vector..
R = real(ybus);
UR = imag(ybus);
vi = find(type == 1); % Index of voltage magnitude measurements..
ppi = find(type == 2); % Index of real power injection measurements..
qi = find(type == 3); % Index of reactive power injection measurements..
pf = find(type == 4); % Index of real powerflow measurements..
qf = find(type == 5); % Index of reactive powerflow measurements..
nvi = length(vi); % Number of Voltage measurements..
npi = length(ppi); % Number of Real Power Injection measurements..
nqi = length(qi); % Number of Reactive Power Injection measurements..
npf = length(pf); % Number of Real Power Flow measurements..
nqf = length(qf); % Number of Reactive Power Flow measurements..
iter = 1;
tol = 5;
while(tol > 1e-4)
%Measurement Function, h
h1 = V(fbus(vi),1);
h2 = zeros(npi,1);
h3 = zeros(nqi,1);
h4 = zeros(npf,1);
h5 = zeros(nqf,1);
for i = 1:npi
m = fbus(ppi(i));
for k = 1:nbus
h2(i) = h2(i) + V(m)*V(k)*(R(m,k)*cos(del(m)-del(k)) + UR(m,k)*sin(del(m)-del(k)));
end
end
for i = 1:nqi
m = fbus(qi(i));
for k = 1:nbus
h3(i) = h3(i) + V(m)*V(k)*(R(m,k)*sin(del(m)-del(k)) – UR(m,k)*cos(del(m)-del(k)));
end
end
for i = 1:npf
m = fbus(pf(i));
n = tbus(pf(i));
h4(i) = -V(m)^2*R(m,n) – V(m)*V(n)*(-R(m,n)*cos(del(m)-del(n)) – UR(m,n)*sin(del(m)-del(n)));
end
for i = 1:nqf
m = fbus(qf(i));
n = tbus(qf(i));
h5(i) = -V(m)^2*(-UR(m,n)+bpq(m,n)) – V(m)*V(n)*(-R(m,n)*sin(del(m)-del(n)) + UR(m,n)*cos(del(m)-del(n)));
end
h = [h1; h2; h3; h4; h5];
% Residue..
r = z – h;
% Jacobian..
% H11 – Derivative of V with respect to angles.. All Zeros
H11 = zeros(nvi,nbus-1);
% H12 – Derivative of V with respect to V..
H12 = zeros(nvi,nbus);
for k = 1:nvi
for n = 1:nbus
if n == k
H12(k,n) = 1;
end
end
end
% H21 – Derivative of Real Power Injections with Angles..
H21 = zeros(npi,nbus-1);
for i = 1:npi
m = fbus(ppi(i));
for k = 1:(nbus-1)
if k+1 == m
for n = 1:nbus
H21(i,k) = H21(i,k) + V(m)* V(n)*(-R(m,n)*sin(del(m)-del(n)) + UR(m,n)*cos(del(m)-del(n)));
end
H21(i,k) = H21(i,k) – V(m)^2*UR(m,m);
else
H21(i,k) = V(m)* V(k+1)*(R(m,k+1)*sin(del(m)-del(k+1)) – UR(m,k+1)*cos(del(m)-del(k+1)));
end
end
end
% H22 – Derivative of Real Power Injections with V..
H22 = zeros(npi,nbus);
for i = 1:npi
m = fbus(ppi(i));
for k = 1:(nbus)
if k == m
for n = 1:nbus
H22(i,k) = H22(i,k) + V(n)*(R(m,n)*cos(del(m)-del(n)) + UR(m,n)*sin(del(m)-del(n)));
end
H22(i,k) = H22(i,k) + V(m)*R(m,m);
else
H22(i,k) = V(m)*(R(m,k)*cos(del(m)-del(k)) + UR(m,k)*sin(del(m)-del(k)));
end
end
end
% H31 – Derivative of Reactive Power Injections with Angles..
H31 = zeros(nqi,nbus-1);
for i = 1:nqi
m = fbus(qi(i));
for k = 1:(nbus-1)
if k+1 == m
for n = 1:nbus
H31(i,k) = H31(i,k) + V(m)* V(n)*(R(m,n)*cos(del(m)-del(n)) + UR(m,n)*sin(del(m)-del(n)));
end
H31(i,k) = H31(i,k) – V(m)^2*R(m,m);
else
H31(i,k) = V(m)* V(k+1)*(-R(m,k+1)*cos(del(m)-del(k+1)) – UR(m,k+1)*sin(del(m)-del(k+1)));
end
end
end
% H32 – Derivative of Reactive Power Injections with V..
H32 = zeros(nqi,nbus);
for i = 1:nqi
m = fbus(qi(i));
for k = 1:(nbus)
if k == m
for n = 1:nbus
H32(i,k) = H32(i,k) + V(n)*(R(m,n)*sin(del(m)-del(n)) – UR(m,n)*cos(del(m)-del(n)));
end
H32(i,k) = H32(i,k) – V(m)*UR(m,m);
else
H32(i,k) = V(m)*(R(m,k)*sin(del(m)-del(k)) – UR(m,k)*cos(del(m)-del(k)));
end
end
end
% H41 – Derivative of Real Power Flows with Angles..
H41 = zeros(npf,nbus-1);
for i = 1:npf
m = fbus(pf(i));
n = tbus(pf(i));
for k = 1:(nbus-1)
if k+1 == m
H41(i,k) = V(m)* V(n)*(-R(m,n)*sin(del(m)-del(n)) + UR(m,n)*cos(del(m)-del(n)));
else if k+1 == n
H41(i,k) = -V(m)* V(n)*(-R(m,n)*sin(del(m)-del(n)) + UR(m,n)*cos(del(m)-del(n)));
else
H41(i,k) = 0;
end
end
end
end
% H42 – Derivative of Real Power Flows with V..
H42 = zeros(npf,nbus);
for i = 1:npf
m = fbus(pf(i));
n = tbus(pf(i));
for k = 1:nbus
if k == m
H42(i,k) = -V(n)*(-R(m,n)*cos(del(m)-del(n)) – UR(m,n)*sin(del(m)-del(n))) – 2*R(m,n)*V(m);
else if k == n
H42(i,k) = -V(m)*(-R(m,n)*cos(del(m)-del(n)) – UR(m,n)*sin(del(m)-del(n)));
else
H42(i,k) = 0;
end
end
end
end
% H51 – Derivative of Reactive Power Flows with Angles..
H51 = zeros(nqf,nbus-1);
for i = 1:nqf
m = fbus(qf(i));
n = tbus(qf(i));
for k = 1:(nbus-1)
if k+1 == m
H51(i,k) = -V(m)* V(n)*(-R(m,n)*cos(del(m)-del(n)) – UR(m,n)*sin(del(m)-del(n)));
else if k+1 == n
H51(i,k) = V(m)* V(n)*(-R(m,n)*cos(del(m)-del(n)) – UR(m,n)*sin(del(m)-del(n)));
else
H51(i,k) = 0;
end
end
end
end
% H52 – Derivative of Reactive Power Flows with V..
H52 = zeros(nqf,nbus);
for i = 1:nqf
m = fbus(qf(i));
n = tbus(qf(i));
for k = 1:nbus
if k == m
H52(i,k) = -V(n)*(-R(m,n)*sin(del(m)-del(n)) + UR(m,n)*cos(del(m)-del(n))) – 2*V(m)*(-UR(m,n)+ bpq(m,n));
else if k == n
H52(i,k) = -V(m)*(-R(m,n)*sin(del(m)-del(n)) + UR(m,n)*cos(del(m)-del(n)));
else
H52(i,k) = 0;
end
end
end
end
% Measurement Jacobian, H..
H = [H11 H12; H21 H22; H31 H32; H41 H42; H51 H52];
% Gain Matrix, Gm..
Gm = H'*inv(Ri)*H;
%Objective Function..
J = sum(inv(Ri)*r.^2);
% State Vector..
dE = inv(Gm)*(H'*inv(Ri)*r);
E = E + dE;
del(2:end) = E(1:nbus-1);
V = E(nbus:end);
iter = iter + 1;
tol = max(abs(dE));
end
CvE = diag(inv(H'*inv(Ri)*H)); % Covariance matrix..
Del = 180/pi*del;
E2 = [V Del]; % Bus Voltages and angles..
disp('——– State Estimation ——————');
disp('————————–');
disp('| Bus | V | Angle | ');
disp('| No | pu | Degree | ');
disp('————————–');
for m = 1:n
fprintf('%4g', m); fprintf(' %8.4f', V(m)); fprintf(' %8.4f', Del(m)); fprintf('\n');
end
disp('———————————————');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Theta=mpc.bus(:,30); % actual voltage angles for comparison, to be estimated
z2=H2*Theta/180*pi; %this is measurement from bus meters, it shall be read from mpc=Gen-Load: z2=mpc.gen(:,2)-mpc.bus(:,3)
z=[z1;z2]; % overall measurement vector z
theta=inv(H'*H)*H'*z; % estimation method
theta=theta-theta(1); % making bus 1 angle zero, as a reference bus
theta=mod(theta/pi*180,180)-180; % convert to degree
theta(1)=theta(1)+180; % bus 1 to zero
plot(1:30,Theta,'b-',1:30,theta,'r–')
legend('Original', 'Estimated')

Best Answer

Hi, I tried to execute your code with some random input. The error in your code is due to the following line
tol = 5;
while(tol > 1e-4)
This condition always returns logical 1. So the loop executes continuously and the code after the while loop never executes. After changing the condition the code should work.
Related Question