MATLAB: Accuracy of eig in support of complex step differentation: Derivative estimate accuracy degrades when step gets too small

accuracycomplex step differentiationeig

Consider the uses of complex step differentiation to estimate the derivative of an eigenvalue of a real non-symmetric matrix, using eig in MATLAB double precision, for the calculation. The traditional recommendation is to use step = 1e-20 * 1i. But perhaps extended precision calculation of eig is needed to support this?
I noticed that for steps smaller than perhaps about 1e-14 *1i (or maybe even less), the accuracy of the complex step differentiation estimate seems to degrade, and become unstable. Is this due to accuracy limitation in eig in MATLAB double precision? The matrix in question has various norms in the ballpark of 1. Furthermore, the same calculation showed greater degradation in MATLAB R2013A WIN32 than in R2014A WIN 64. Is there any reason to think the accuracy of eig should be different between these configurations?
The calculation is carried out as d = step length (say 1e-14 or 1e-20 or whatever). For simplicity, I'll show this for the maximum eigenvalue. Consider a real matrix A. Then to compute the (i,j) component of the gradient of the maximum eigenvalue with respect to A,
B = A;
B(i,j) = A(i,j) + d*1i;
derivative_estimate = imag(max(eig(B))/d)
Complex step differentiation is not "supposed to" have a problem with small step size, and in fact, that's supposed to be its advantage over forward or central differences, whose accuracy is limited by a step size below which accuracy degrades.
Thanks.

Best Answer

I have to admit that I am unsure about what is going on here. Complex step differentiation relies upon the unperturbed function values for real arguments being real. Then the complex perturbation causes the software to produce a complex result, so numerical differencing is not a concern. But eig of a real nonsymmetric matrix can be complex and taking max just makes things worse. Consider A = gallery(5). The exact eigenvalues are all zero. But eig(A) doesn't reveal that. And a complex step isn't any help. The eigenvalue condition numbers are crucial. For multiple eigenvalues without a full set of eigenvectors, such as gallery(5), the condition numbers are infinite. Taking a complex step, or any step, in the vicinity of a badly conditioned eigenvalue will have numerical difficulties. -- Cleve