Wasserstein Convergence of Series Expansion of Probability Measure – Probability Theory

geometric-measure-theorymeasure-theoryoptimal-transportationpr.probability

Let $X$ be a Polish space and let $(\mu_i)_{i=1}^{\infty}$ be a sequence of probability measures in the Wasserstein space $\mathcal{P}(X)$ on $X$. Let $(\beta_i)_{i=1}^{\infty}$ be a summable sequence in $(0,\infty)$. For every positive integer $k$, define the probability measures
$$
\nu_k = (\sum_{1\leq i\leq k}\beta_i)^{-1} \sum_{1\leq i\leq k} \beta_i \mu_i
$$

and define the probability measure
$$
\nu_{\infty} = (\sum_{i=1}^{\infty}\beta_i)^{-1} \sum_{i=1}^{\infty} \beta_i \mu_i.
$$

Is it true/clear that
$
\lim\limits_{k\to\infty} \mathcal{W}(\nu_k,\nu_{\infty}) = 0,
$
quantitatively (here $\mathcal{W}$ denotes the Wasserstein distance on $\mathcal{P}(X)$).

Best Answer

It is true and clear if the metric space $X$ has a finite diameter, but false in general: Take $\beta_i=2^{-i}$ and $\mu_i$ the point mass at $3^i$.

Details: In the case $D=$diam$(X)<\infty$, write $s_k=\sum_{i \le k} \beta_i$ and $s=\sum_{i<\infty} \beta_i$. Then $$\nu_\infty=\frac{s_k}{s} \nu_k+\frac{s-s_k}{s} \gamma_k$$ for some probability measure $$\gamma_k=\frac{\sum_{i > k} \beta_i \mu_i}{s-s_k} \,.$$ Therefore $$\nu-\nu_k=\frac{s-s_k}{s} (\gamma_k-\nu_k)$$ whence $$\mathcal{W}(\nu_k,\nu_{\infty}) \le \frac{s-s_k}{s} D$$ because the diameter of the Wasserstein metric on $\mathcal{P}(X)$ is $D$.

Related Question