Tangent Numbers, Secant Numbers, and Matrix Permanents in Number Theory

co.combinatoricsinteger-sequencesmatricesnt.number-theorypermanent

Inspired by Question 402572, I consider the permanent of matrices
$$f(n)=\mathrm{per}(A)=\mathrm{per}\left[\operatorname{sgn} \left(\sin\pi\frac{j+2k}{n+1} \right)\right]_{1\le j,k\le n},$$

where $n$ is a positive integer and $\operatorname{sgn}$ is the sign-function.

When $n=1,2,3,4,5,6,$ the matrices are
$$\left[ \begin {array}{c} -1\end {array} \right],$$
$$\left[ \begin {array}{cc} 0&-1\\ -1&0\end {array}\right],$$
$$\left[ \begin {array}{ccc} 1&-1&-1\\ 0&-1&0
\\ -1&-1&1\end {array} \right]
,$$

$$\left[ \begin {array}{cccc} 1&0&-1&-1\\ 1&-1&-1&0
\\ 0&-1&-1&1\\ -1&-1&0&1
\end {array} \right]
,$$

$$\left[ \begin {array}{ccccc} 1&1&-1&-1&-1\\ 1&0&-1&
-1&0\\ 1&-1&-1&-1&1\\ 0&-1&-1&0&1
\\ -1&-1&-1&1&1\end {array} \right]
,$$

$$\left[ \begin {array}{cccccc} 1&1&0&-1&-1&-1\\ 1&1&
-1&-1&-1&0\\ 1&0&-1&-1&-1&1\\ 1&-1
&-1&-1&0&1\\ 0&-1&-1&-1&1&1\\ -1&-
1&-1&0&1&1\end {array} \right]
.$$

Numerical computation indicates that
\begin{equation}
\mathrm{per}(A)=
\begin{cases}
-T_n&\mbox{if $n$ is odd}\\
E_n&\mbox{if $n$ is even}
\end{cases}
\end{equation}

for $3\leq n \leq 21$, where $T_n$ and $E_n$ are tangent numbers and secant numbers, i.e.

$$\tan{x}=\sum_{2\nmid n}T_n\frac{x^n}{n!}=1\frac{x}{1!}+2\frac{x^3}{3!}+16\frac{x^5}{5!}+272\frac{x^7}{7!}+7936\frac{x^9}{9!}+\cdots$$
and

$$\sec{x}=\sum_{2\mid n}E_n\frac{x^n}{n!}=1+1\frac{x^2}{2!}+5\frac{x^4}{4!}+61\frac{x^6}{6!}+1385\frac{x^8}{8!}+50521\frac{x^{10}}{10!}+\cdots$$
respectively.

f(1) = -1

f(2) = 1

f(3) = -2

f(4) = 5

f(5) = -16

f(6) = 61

f(7) = -272

f(8) = 1385

f(9) = -7936

f(10) = 50521

f(11) = -353792

f(12) = 2702765

f(13) = -22368256

f(14) = 199360981

f(15) = -1903757312

f(16) = 19391512145

f(17) = -209865342976

f(18) = 2404879675441

f(19) = -29088885112832

f(20) = 370371188237525

f(21) = -4951498053124096

Thus, we obtain the following

Conjecture. For any positive integer $n$,

\begin{equation}
\mathrm{per}(A)=
\begin{cases}
-T_n&\mbox{if $n$ is odd}\\
E_n&\mbox{if $n$ is even}
\end{cases}.
\end{equation}

Question. Is this identity correct? How to prove it?

Best Answer

The conjecture has been proved! See the preprint Proof of five conjectures relating permanents to combinatorial sequences by Fu, Lin and me available from http://arXiv.org/abs/2109.11506.