Probability – Show Convergence Result

gn.general-topologylimits-and-convergencepr.probability

Consider the following sets:
$$
A = \Big\{ x\in X: \Pr\bigg(\lim_{n \to \infty}d\big(p_n, [\ell(x), u(x) ] \big)= 0\bigg)=1 \Big\},
$$

and
$$
A_n = \Big\{ x\in X: d\big(p_n, [\ell(x), u(x) ] \big)= 0\Big\},
$$

where:

  • $\Pr$ denotes probability.
  • $X\subseteq \mathbb{R}$.
  • $(p_n)_n$ is a sequence of random variables taking values in $[0,1]$.
  • $\ell(\cdot)$ and $u(\cdot)$ are real function taking values in $[0,1]$.
  • $d\big(p_n, [\ell(x), u(x) ] \big):= \inf \big\{|p_n – y| : y \in [\ell(x), u(x) ] \big\}$.

Could you help me to show that
$$
d_H(A, A_n)\rightarrow_{a.s.} 0,
$$

where
$$
d_H(A, A_n)\equiv \max\{\sup_{x\in A_n}d(x,A), \sup_{x\in A}d(x, A_n)\},
$$

is the Hausdorff distance.

Best Answer

$\newcommand\de\delta\newcommand\ep\varepsilon$You wrote

Could you help me to show that under Ass1 and Ass2 $$d_H(A, A_n)\rightarrow_{a.s.} 0$$

Of course, this is not true in such generality. For instance, suppose that $X=[0,1)$, $\ell(x)=u(x)=x(1-x)$ for $x\in X$, and $p_n=u(\ep_n)$, where $\ep_n:=\sqrt{(\ln2)/(2n)}$.

Then $$A_n=\{x\in X\colon p_n=u(x)\}=\{\ep_n,1-\ep_n\},$$ $$A=\{x\in X\colon p_n\to u(x)\}=\{0\}\ne\emptyset,$$ $$A_n(\de)=\{x\in X\colon|p_n-u(x)|\le\de\}.$$ So, for each $x\in A$ and each real $\de>0$ we have $x=0$ and hence $$\Pr(x\in A_n(\de))=\Pr(0\in A_n(\de))=\Pr(|p_n|\le\de) \\ =\Pr(p_n\le\de)\ge\Pr(\ep_n\le\de)=1(\ep_n\le\de) \\ =1(\sqrt{(\ln2)/(2n)}\le\de)\ge1-\frac{2}{\exp(2n\de^2)}.$$

So, all your assumptions hold. However, $$d_H(A,A_n)\to1\ne0.$$

Related Question