Number Theory – Why Use Weil Group Instead of Absolute Galois Group?

nt.number-theory

In many formulation of Class Field theory, the Weil group is favored as compared to the Absolute Galois group. May I asked why it is so? I know that Weil group can be generalized better to Langlands program but is there a more natural answer?

Also we know that the abelian Weil Group is the isomorphic image of the reciprocity map of the multiplicative group (in the local case) and of the idele-class group (in the global case). Is there any sense in which the "right" direction of the arrow is the inverse of the reciprocity map?

Please feel free to edit the question into a form that you think might be better.

Best Answer

One reason we prefer the Weil group over the Galois group (at least in the local case) is that the Weil group is locally compact, thus it has "more" representations (over $\bf C$). In fact, all $\bf C$-valued characters of $Gal(\bar{\bf Q_p} / \bf Q_p)$ have finite image, where as that of $W_{\bf Q_p}$ can very well have infinite image. The same goes for general representations of these groups (recall that $\bf{GL}_n(\bf C)$ has no small subgroups.)

The global Weil group (which is much more complicated than the local one), on the other hand, is a rather mysterious object that is pretty much untouched in modern number theory as far as I can tell. Supposedly the global Langlands group used in the global Langlands correspondence should be the extension of the global Weil group by a compact group, but this is still largely conjectural.

The standard reference is Tate's "Number Theory Background" in the Corvallis volumes (available for free at ams.org). Also Brooks Roberts has notes on Weil representations available at his website.

Related Question