[Math] What’s so special about the forgetful functor from G-rep to Vect

ct.category-theorygr.group-theoryrt.representation-theorytannakian-category

The following is some version of Tannaka-Krein theory, and is reasonably well-known:

Let $G$ be a group (in Set is all I care about for now), and $G\text{-Rep}$ the category of all $G$-modules (over some field $\mathbb K$, say). It is a fairly structured category (complete, cocomplete, abelian, $\mathbb K$-enriched, …) and in particular carries a symmetric tensor product $\otimes$. The forgetful functor $\operatorname{Forget}: G\text{-Rep} \to \text{Vect}$ respects all of this structure, and in particular is (symmetric) monoidal. Let $\operatorname{End}_\otimes(\operatorname{Forget})$ denote the monoid of monoidal natural transformations of $\operatorname{Forget}$. Then it is a group, and there is a canonical isomorphism $\operatorname{End}_\otimes(\operatorname{Forget}) \cong G$.

The following is probably also reasonably well-known, but I don't know it myself:

Let $G$, etc., be as above, but suppose that we have forgotten what $G$ the category $G\text{-Rep}$ came from, and in particular forgot, at least momentarily, the data of the forgetful functor. We can nevertheless recover it, because in fact $\operatorname{Forget}$ is the unique-up-to-isomorphism ADJECTIVES functor $G\text{-Rep} \to \text{Vect}$.

My question is: what are the words that should go in place of "ADJECTIVES" above? Certainly "linear, continuous, cocontinuous, monoidal" are all reasonable words, although my intuition has been that I can drop "cocontinuous" from the list. But even with all these words, I don't see how to prove the uniqueness. If I had to guess, I would guess that the latter claim is a result of Deligne's, although I don't read French well enough to skim a bunch of his papers and find it. Any pointers to the literature?

Best Answer

If $G$ is an affine algebraic group (for example a finite group), then the category of $k$-linear cocontinuous symmetric monoidal functors from $\mathsf{Rep}(G)$ to $\mathsf{Vect}_k$ is equivalent to the category of $G$-torsors over $k$. In particular, not every such functor needs to be isomorphic to the identity. For example, if $k'$ is finite Galois extension of k with Galois group $G$, then the functor $F(V) = (V \otimes_{k} k')^{G}$ will satisfy all the axioms you will think to write down, but is not isomorphic to the identity functor.

Related Question