Italian Algebraic Geometers – What Mistakes Were Made?

ag.algebraic-geometryho.history-overview

It's "well-known" that the 19th century Italian school of algebraic geometry made great progress but also started to flounder due to lack of rigour, possibly in part due to the fact that foundations (comm alg etc) were only just being laid, and possibly (as far as I know) due to the fact that in the 19th century not everyone had come round to the axiomatic way of doing things (perhaps in those days one could use geometric plausibility arguments and they would not be shouted down as non-rigorous and hence invalid? I have no real idea about how maths was done then).

But someone asked me for an explicit example of a false result "proved" by this school, and I was at a loss. Can anyone point me to an explicit example? Preferably a published paper that contained arguments which were at the time at least partially accepted by the community as being OK but in fact have holes in? Actually, to be honest I'd probably prefer some sort of English historical summary of such things, but I do have access to (living and rigorous) Italian algebraic geometers if necessary 😉

EDIT: A few people have posted solutions which hang upon the Italian-ness or otherwise of the person making the mathematical mistake. It was not my intention to bring the Italian-ness or otherwise of mathematicians into the question! Let me clarify the underlying issue: a friend of mine, interested in logic, asked me about (a) Grothendieck's point of view of set theory and (b) a precise way that one could formulate the statement that he "made algebraic geometry rigorous". My question stemmed from a desire to answer his.

Best Answer

As for a result that was not simply incorrectly proved, but actually false, there is the case of the Severi bound(*) for the maximum number of singular double points of a surface in P^3. The prediction implies that there are no surfaces in P^3 of degree 6 with more than 52 nodes, but in fact there are such surfaces in P^3 with 65 nodes such as the Barth sextic (and this is optimal by Jaffe--Ruberman).

(*) Francesco Severi; "Sul massimo numero di nodi di una superficie di dato ordine dello spazio ordinario o di una forma di un iperspazio." Ann. Mat. Pura Appl. (4) 25, (1946). 1--41, MR0025179, doi:10.1007/bf02418077.