[Math] What manifolds are bounded by RP^odd

4-manifoldsat.algebraic-topologycobordismexamplesmanifolds

Real projective spaces $\mathbb{R}P^n$ have $\mathbb{Z}/2$ cohomology rings $\mathbb{Z}/2[x]/(x^{n+1})$ and total Stiefel-Whitney class $(1+x)^{n+1}$ which is $1$ when $n$ is odd, so it follows that odd dimensional ones are boundaries of compact $(n+1)$-manifolds. My question is: are there any especially nice constructions of these $(n+1)$-manifolds?

I'm especially interested in the case $n=3$. I believe we can get an explicit example of a 4-manifold bound by $\mathbb{R}P^3$ using Rokhlin/Lickorish-Wallace but it doesn't look like that would generalize to higher dimensions at all easily. Are there a lot of different 4-manifolds with this property?

Best Answer

$\mathbb RP^3$ double-covers the lens space $L_{4,1}$, so it's the boundary of the mapping cylinder of that covering map.

In general $\mathbb RP^n$ for $n$ odd double-covers such a lens space. So in general $\mathbb RP^n$ is the boundary of a pretty standard $I$-bundle over the appropriate lens space. To be specific, define the general $L_{4,1}$ as $S^{2n-1} / \mathbb Z_4$ where $Z_4 \subset S^1$ are the 4-th roots of unity, and we're using the standard action of the unit complex numbers on an odd dimensional sphere $S^{2n-1} \subset \mathbb C^n$.

Edit: generalizing Tim's construction, you have the fiber bundle $S^1 \to S^{2n-1} \to \mathbb CP^{n-1}$. This allows you to think of $S^{2n-1}$ as the boundary of the tautological $D^2$-bundle over $\mathbb CP^{n-1}$. You can mod out the whole bundle by the antipodal map and you get $\mathbb RP^{2n-1}$ as the boundary of the disc bundle over $\mathbb CP^{n-1}$ with Euler class $2$. So this gives you an orientable manifold bounding $\mathbb RP^{2n-1}$ while my previous example was non-orientable.