Set Theory – Are There Large Cardinals Beyond Kunen Inconsistency?

large-cardinalslo.logicset-theory

First fix the following notations:‎

‎$‎AF:=‎$ ‎The ‎axiom ‎of ‎foundation‎

‎$‎ZFC^{-}‎:=‎ZFC‎\setminus ‎\left\lbrace AF ‎\right\rbrace ‎‎‎‎‎$‎‎‎‎‎

‎$‎G:=‎$ ‎The ‎proper ‎class ‎of ‎all ‎sets‎

‎$‎V:=‎$ ‎The ‎proper ‎class ‎of ‎Von ‎neumann's ‎cumulative ‎hierarchy‎

‎$‎L:=‎$ ‎The ‎proper ‎class ‎of ‎Godel's cumulative ‎hierarchy‎

‎$‎G=V:~‎‎\forall x‎~‎\exists ‎y~(ord(y) ‎‎\wedge ‎“x\in ‎V_{y}")‎$ ‎‎

‎$‎G=L:~‎‎\forall x‎~‎\exists ‎y~(ord(y) ‎‎\wedge ‎“x\in L_{y}")‎$‎‎ ‎‎
‎‎

Almost ‎all ‎of ‎‎$‎ZFC‎$ ‎axioms ‎have a‎ ‎same "‎nature" in some sense. ‎They ‎are ‎"generating" ‎new ‎sets ‎which form the world of mathematical objects ‎$‎G‎$‎. ‎In ‎other ‎words‎ ‎they are ‎complicating ‎‎our ‎mathematical chess by increasing its playable and legitimated nuts. ‎But ‎‎$‎AF‎$‎ ‎is ‎an ‎exception ‎in ‎‎$‎ZFC‎$. ‎It ‎is "simplifying" ‎our mathematical ‎world ‎by ‎removing ‎some ‎sets which innocently are accused to be ‎"ill ‎founded". Even ‎$‎AF‎$‎ is regulating ‎$‎G‎$ ‎by ‎‎$‎V‎$ ‎and ‎says ‎‎$‎G=V‎$. So ‎‎it‎‎ ‎is "miniaturizing" the "real" size of ‎$‎G‎$ ‎by the ‎‎"very ‎small" ‎cumulative ‎hierarchy ‎‎$‎V‎$ ‎as ‎same ‎as ‎the ‎assumption ‎of ‎constructibility ‎axiom ‎‎$‎G=L‎$. ‎In ‎fact‎ ‎"minimizing" the size of mathematical universe ‎is ontological ‎"nature" ‎of ‎all ‎constructibilty ‎kind ‎of ‎axioms ‎like ‎‎$‎G=W‎$ ‎which ‎‎$‎W‎$ ‎is ‎an ‎arbitrary ‎cumulative ‎hierarchy. ‎But ‎in ‎the ‎opposite direction ‎the ‎large ‎cardinal ‎axioms ‎says a‎ ‎different ‎thing ‎about ‎‎$‎G‎$‎. We know that any large cardinal axiom stronger than "‎$‎‎0^{\sharp}$ ‎exists" ‎implies ‎‎$‎G\neq L‎$‎. This illustrates the "nature" of large cardinal axioms. They implicitly say the universe of mathematical objects is too big and is "not" reachable by cumulative hierarchies. So it is obvious that any constructibility kind axiom such as ‎$‎AF‎$, ‎imposes a‎ ‎limitation ‎on ‎the ‎height ‎of ‎large ‎cardinal ‎tree‎. ‎One ‎of ‎the‎se serious limitations is Kunen inconsistency theorem in ‎$‎‎ZFC^{-}+AF$‎.‎

Theorem (Kunen inconsistency) There is no non trivial elementary embedding ‎$‎‎j:\langle V,\in\rangle\longrightarrow ‎\langle V,\in\rangle $ ‎(or equivalently ‎$‎‎j:\langle G,\in\rangle\longrightarrow ‎\langle G,\in\rangle$‎)‎

‎‎
The ‎proof ‎has ‎two ‎main ‎steps as follows:‎

Step (1): ‎By ‎induction ‎on ‎Von ‎neumann's ‎"rank" ‎in ‎‎$‎V‎$‎ one can prove any non trivial elementary embedding ‎$‎‎j:\langle V,\in\rangle\longrightarrow ‎\langle V,\in\rangle‎$ has a critical point ‎$‎‎‎\kappa‎$‎ on ‎$‎Ord‎$‎.

Step ‎(2): ‎By ‎iterating ‎‎$‎j‎$ ‎on this critical point one can find an ordinal ‎$‎‎\alpha‎$ ‎such ‎that ‎‎$‎‎j[‎\alpha‎]=‎\lbrace‎ j(‎\beta‎)~|~‎\beta ‎\in ‎‎\alpha ‎\rbrace‎‎‎ \notin V (=G)‎$ ‎which ‎is a‎ ‎contradiction.‎

Now ‎in ‎the ‎absence ‎of ‎‎$‎AF‎$ ‎we ‎must ‎notice ‎that ‎the Kunen inconsistency ‎theorem ‎splits ‎into ‎two ‎distinct ‎statements and the orginal proof fails in both of them‎‎‎‎. ‎

Statement (1):(Strong version of Kunen inconsistency) There is no non trivial elementary embedding ‎‎‎$‎‎j:\langle G,\in\rangle‎\longrightarrow ‎\langle G,\in\rangle$‎.‎

Statement (2):(Weak version of Kunen inconsistency) There is no non trivial elementary embedding ‎‎‎$‎‎j:\langle V,\in\rangle\longrightarrow \langle V,\in\rangle$‎.

‎‎
In statement ‎(1)‎, step (1) collapses because without ‎$‎AF‎$‎ we have not a "rank notion" on ‎$‎G‎$ ‎and ‎the ‎induction ‎makes ‎no ‎sense. So we can not find any critical point on ‎$‎Ord‎$ ‎for ‎‎$‎j‎$ ‎by "‎this ‎method". ‎

In statement ‎(2)‎, step (2) fails because without ‎$‎AF‎$‎ we don't know‎ $‎‎G=V$ and so $j[‎\alpha‎]\notin V‎$ ‎is ‎not a‎ ‎contradiction.‎

‎But ‎it is clear that ‎in ‎‎$‎ZFC^{-}‎$ ‎the ‎original ‎proof ‎of ‎Kunen ‎inconsistency theorem ‎works ‎for ‎both of the ‎following ‎propositions:‎

Proposition (1): There is no elementary embedding ‎‎‎$‎‎j:\langle G,\in\rangle\longrightarrow ‎\langle G,\in\rangle $‎ with a critical point on ‎$‎Ord‎$‎.

Proposition (2): Every non trivial elementary embedding ‎‎‎$‎‎j:\langle V,\in\rangle\longrightarrow \langle V,\in\rangle$‎ has a critical point on ‎$‎Ord‎$‎.
‎‎

Now ‎the ‎main ‎questions ‎are‎: ‎‎

‎‎Question ‎(1): ‎Is ‎the ‎statement ‎"‎There is a non trivial elementary embedding $‎‎j:\langle V,\in\rangle\longrightarrow ‎\langle V,\in\rangle$‎" an acceptable large cardinal axiom in ‎the absence of ‎$‎AF‎$($‎G=V‎$‎)‎‎?
What about other statements by replacing ‎$‎V‎$ ‎with a‎n ‎arbitrary ‎cumulative ‎hierarchy ‎‎$‎W‎$‎?(In this case don't limit the definition of a cumulative hierarchy by condition ‎$‎‎W_{‎\alpha +1‎}\subseteq P(W_{‎\alpha‎})$‎)‎

Note that such statements are very similar to ‎the ‎statment "‎‎$‎‎0^{\sharp}$ exists" that ‎is ‎equivalent ‎to ‎‎existence of a non trivial elementary embedding $‎‎j:\langle L,\in\rangle\longrightarrow ‎\langle L,\in\rangle$ ‎and ‎could ‎be an ‎"acceptable" ‎large ‎cardinal ‎axiom ‎in ‎the ‎"absence" ‎of ‎‎$‎‎G=L$‎‎. So if the answer of the question (1) be positive, ‎we can go "beyond" weak version of Kunen inconsistency by removing ‎$‎AF‎$ ‎from ‎$‎ZFC‎$‎ and so we can find a family of "Reinhardt shape" cardinals correspond to any cumulative hierarchy ‎$‎W‎$ by a similar argument to proposition (2) dependent on "good behavior" of "rank notion" in ‎$‎W‎$‎‎.

Question ‎(2): ‎Is ‎‎$‎AF‎$ ‎necessary to prove "strong" version of ‎Kunen ‎inconsistency ‎theorem? ‎In ‎the ‎other ‎words ‎is ‎the‎ ‎statement ‎"$Con(ZFC)‎\longrightarrow Con(ZFC^{-}+ ‎\exists‎$‎ a‎ ‎non ‎trivial ‎elementary ‎embedding ‎‎$‎‎j:\langle G,\in\rangle‎\longrightarrow \langle G,\in\rangle)‎‎$"‎‎ ‎true?‎

It seems to go beyond Kunen inconsistency it is not necessary to remove‎ $‎AC‎$ ‎which possibly "harms" our powerful tools and changes the "natural" behavior of objects.It simply suffices that one omit ‎$‎AF‎$‎'s limit on largeness of "Cantor's heaven" and his "set theoretic intuition". َAnyway whole of the set theory is not studying $L$, $V$ or any other cumulative hierarchy and there are many object "out" of these realms. For example ‎without limitation of ‎‎$‎G=L‎$ ‎we ‎can see more large cardinals that are "invisible" in small "scope" of $L$.‎In the same way without limitation of $AF$ we ‎can probably discover ‎more stars in the mathematical universe out of scope of $V$. Furthermore we can produce more interesting models and universes and so we can play an extremely ‎exciting ‎mathematical ‎chess beyond inconsistency, beyond imagination!

Best Answer

The answer to question 2 is yes, and one can even have nontrivial automorphisms. For example, the theory $\mathit{ZFC}^-+{}$“there are two urelements (i.e., sets $x$ satisfying $x=\{x\}$) and the whole universe is obtained from them by iterated power set” is consistent relative to ZFC, and one can define uniquely in this theory an automorphism swapping the two urelements.

For a theory rich in elementary embeddings and automorphisms, Boffa’s set theory (introduced in [1]) is relatively consistent wrt ZFC. The theory proves that any class endowed with a set-like binary relation satisfying the axiom of extensionality (but not necessarily well founded) is isomorphic to $\langle T,\in\rangle$ for some transitive class $T$. (For example, such a transitive collapse of the diagonal on the universe gives you a proper class of urelements, and you can construct even weirder objects. More to the point, any ultrapower of the universe gives you an elementary embedding into a transitive class.) Also, every isomorphism $f\colon\langle t,\in\rangle\to\langle s,\in\rangle$ of transitive sets $t,s$ can be extended to an automorphism of the universe.

Boffa’s theory consists of $\mathit{ZFC}^-$ + global choice + the following axiom:

If $t$ is a transitive set, and $\langle x,e\rangle$ a structure satisfying extensionality which is an end-extension of $\langle t,\in\rangle$, then there exists a transitive set $s\supseteq t$ and an isomorphism $f\colon\langle x,e\rangle\to\langle s,\in\rangle$ identical on $t$.

[1] Maurice Boffa, Forcing et négation de l’axiome de Fondement, Académie Royale de Belgique, Classe des Sciences, Mémoires, Collection 8o, 2e Série, tome XL, fasc. 7, 1972, 52pp.

Related Question