[Math] Model category structures on categories of complexes in abelian categories

ct.category-theoryhomological-algebramodel-categories

Section 2.3 of Hovey's Model Categories book defines a model category structure on Ch(R-Mod), the category of chain complexes of R-modules, where R is a ring. Lemma 2.3.6 then essentially states (I think) that taking projective resolutions of a module corresponds to taking cofibrant replacements of the module, at least in nice cases (e.g. when the projective resolution is bounded below). There is of course also a "dual" model category structure which gives the "dual" result for injective resolutions and fibrant replacements (Theorem 2.3.13).

  1. I think the results in Hovey are proven for not-necessarily-commutative rings. Do things become nicer if we restrict our attention to commutative rings only?

  2. Do these results generalize? For example, is there an analogous model category structure and an analogous result for Ch(OX-Mod), the category of chain complexes of OX-modules, where X is a scheme? More generally, how about for Ch(A), where A is an abelian category?

If the answers to these questions are known, then I assume they would be "standard", but I don't know a reference.


I've re-asked my question in a different form here.

Best Answer

I don't think the existence of the dual "injective" model structure merits an "of course," since its generators are much less obvious to construct. However, it turns out that injective model structures actually exist in more generality than projective ones, for instance they exist for most categories of sheaves. I believe this was originally proven by Joyal, but it was put in an abstract context by Hovey and Gillespie.

The basic idea is that model structures on Ch(A) correspond to well-behaved "cotorsion pairs" on A itself. The projective model structure comes from the (projective objects, all objects) cotorsion pair (which is well-behaved for R-modules, but not for sheaves), and the injective one comes from (all objects, injective objects). There is also e.g. a flat model structure coming from (flat objects, cotorsion objects) which is monoidal and thus useful for deriving tensor products. A good introduction, which I believe has references to most of the literature, is Hovey's paper Cotorsion pairs and model categories.

Related Question