[Math] Isotropic ternary forms

nt.number-theoryquadratic-forms

It is well known that some questions about isotropic ternary forms reduces to the study of the special case $f_0(X)=xz-y^2, X=(x,y,z)$, see page 301 of Cassel's "Rational quadratic forms" (Dover, 2008). In page 303 it is said that given any other general integral isotropic form $f(X)$, there is an integer $m\neq0$ and a nonsingular $3\times 3$ integral matrix $M$ such that
$$mf(X)=f_0(MX).$$
The question is how to compute explicitly $M$. When $f(X)=ax^2+y^2-z^2$ it is quite easy to find $M$. In general, for $f(X)=ax^2+by^2-z^2$, $a>b>1$, it becomes more difficult. Of course, since the form is isotropic, by Legendre's Theorem, $a$ and $b$ satisfy the three relations:
$$(i) \,\,\, aRb \, , \,\,\,\,\,(ii) \,\,\, bRa \, , \,\,\,\,\,(iii) \,\,\, (-ab)/d^2Rd$$
where $R$ is the equivalence relation $mRn$ if, and only if, $m$ is a square modulo $n$ and $d=d(a,b)=g.c.d(a,b)$. Any general formula to obtain $M$ for a specific isotropic ternary $f(X)$ should take this relations into consideration.

For example, the ternary form $f(X)=19x^2+5y^2-z^2$ is isotropic since $19+45=64$ and $76+5=81$ (this ternary form was considered in Integral orthogonal group for indefinite ternary quadratic form). What is $M$ for this particular ternary form?

Best Answer

Thursday: here is an example I proved in full detail, that illustrates the use of the mappings in one direction, along with the possible intricacy of the difference between finding all rational null vectors and successfully finding all primitive integer null vectors:

All solutions to $$ 2(x^2 + y^2 + z^2) - 113 (yz+zx+xy) = 0 $$ with $$ \gcd(x,y,z) = 1 $$ can be written as one of four recipes, with the understanding that we sort by absolute value and possibly multiply through by $-1$ so as to demand $x \geq |y| \geq |z|,$

$$ \left( \begin{array}{r} x \\ y \\ z \end{array} \right) = \left( \begin{array}{r} 37 u^2 + 51 uv + 8 v^2 \\ 8 u^2 -35 uv -6 v^2 \\ -6 u^2 + 23 uv + 37 v^2 \end{array} \right) $$

$$ \left( \begin{array}{r} x \\ y \\ z \end{array} \right) = \left( \begin{array}{r} 32 u^2 + 61 uv + 18 v^2 \\ 18 u^2 -25 uv -11 v^2 \\ -11 u^2 + 3 uv + 32 v^2 \end{array} \right) $$

$$ \left( \begin{array}{r} x \\ y \\ z \end{array} \right) = \left( \begin{array}{r} 38 u^2 + 45 uv + 4 v^2 \\ 4 u^2 -37 uv -3 v^2 \\ -3 u^2 + 31 uv + 38 v^2 \end{array} \right) $$

$$ \left( \begin{array}{r} x \\ y \\ z \end{array} \right) = \left( \begin{array}{r} 29 u^2 + 63 uv + 22 v^2 \\ 22 u^2 -19 uv -12 v^2 \\ -12 u^2 -5 uv + 29 v^2 \end{array} \right) $$

In all four cases we simply discard occurrences when the resulting $x,y,z$ have a common factor.

The four are all of the form $X = R U,$ where $$ X = \left( \begin{array}{r} x \\ y \\ z \end{array} \right) $$ and $$ U = \left( \begin{array}{r} u^2 \\ uv \\ v^2 \end{array} \right). $$ Clearly we take $\gcd(u,v) = 1.$ We can also take $u,v \geq 0.$ This is an artifact of the extreme symmetry of the ternary form and the extremely special form of the four matrices $R$ that I chose.

jagy@phobeusjunior:~$ ./isotropy_just_ordered 2 113 1200
   29   22  -12  % B lambda  0  / B lambda      1 =  1 
   32   18  -11  % B lambda  0  / B lambda      1 =  1 
   37    8   -6  % B lambda  0  / B lambda      1 =  1 
   38    4   -3  % B lambda  0  / B lambda      1 =  1 
  188  171  -86  % B lambda  0  / B lambda     49 = 7^2
  211  144  -82  % B lambda  0  / B lambda     49 = 7^2
  226  123  -76  % B lambda  0  / B lambda     49 = 7^2
  243   94  -64  % B lambda  0  / B lambda     49 = 7^2
  246   88  -61  % B lambda  0  / B lambda     49 = 7^2
  258   59  -44  % B lambda  0  / B lambda     49 = 7^2
  264   38  -29  % B lambda  0  / B lambda     49 = 7^2
  268   11   -6  % B lambda  0  / B lambda     49 = 7^2
  396  262 -151  % B lambda  0  / B lambda    169 = 13^2
  432  209 -134  % B lambda  0  / B lambda    169 = 13^2
  472  129  -94  % B lambda  0  / B lambda    169 = 13^2
  489   76  -58  % B lambda  0  / B lambda    169 = 13^2
  516  458 -233  % B lambda  0  / B lambda    361 = 19^2
  526  447 -232  % B lambda  0  / B lambda    361 = 19^2
  628  311 -198  % B lambda  0  / B lambda    361 = 19^2
  656  262 -177  % B lambda  0  / B lambda    361 = 19^2
  671  232 -162  % B lambda  0  / B lambda    361 = 19^2
  692  183 -134  % B lambda  0  / B lambda    361 = 19^2
  726   47  -32  % B lambda  0  / B lambda    361 = 19^2
  727   36  -22  % B lambda  0  / B lambda    361 = 19^2
  804  787 -382  % B lambda  0  / B lambda    961 = 31^2
  894  688 -373  % B lambda  0  / B lambda    961 = 31^2
  953  946 -456  % B lambda  0  / B lambda   1369 = 37^2
 1034  492 -317  % B lambda  0  / B lambda    961 = 31^2
 1062  443 -296  % B lambda  0  / B lambda    961 = 31^2
 1102  363 -256  % B lambda  0  / B lambda    961 = 31^2
 1123  314 -228  % B lambda  0  / B lambda    961 = 31^2
 1159 1046 -528  % B lambda  0  / B lambda   1849 = 43^2
 1179  118  -88  % B lambda  0  / B lambda    961 = 31^2
 1188   19    2  % B lambda  0  / B lambda    961 = 31^2
 1199 1002 -524  % B lambda  0  / B lambda   1849 = 43^2
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

hi

jagy@phobeusjunior:~$ ./isotropy_binaries_combined 2 113 1200 | sort -n
             x      y      z          recipe          u   v 
             29     22    -12      < 29, 63, 22 >      1  0
             32     18    -11      < 32, 61, 18 >      1  0
             37      8     -6      < 37, 51, 8 >      1  0
             38      4     -3      < 38, 45, 4 >      1  0

            188    171    -86      < 37, 51, 8 >      1  2
            211    144    -82      < 38, 45, 4 >      1  2
            226    123    -76      < 32, 61, 18 >      1  2
            243     94    -64      < 29, 63, 22 >      1  2

            246     88    -61      < 38, 45, 4 >      2  1
            258     59    -44      < 37, 51, 8 >      2  1
            264     38    -29      < 29, 63, 22 >      2  1
            268     11     -6      < 32, 61, 18 >      2  1

            396    262   -151      < 37, 51, 8 >      1  3
            432    209   -134      < 38, 45, 4 >      1  3
            472    129    -94      < 29, 63, 22 >      3  1
            489     76    -58      < 32, 61, 18 >      3  1

            516    458   -233      < 38, 45, 4 >      2  3
            526    447   -232      < 37, 51, 8 >      2  3
            628    311   -198      < 38, 45, 4 >      3  2
            656    262   -177      < 32, 61, 18 >      2  3
            671    232   -162      < 37, 51, 8 >      3  2
            692    183   -134      < 29, 63, 22 >      2  3
            726     47    -32      < 32, 61, 18 >      3  2
            727     36    -22      < 29, 63, 22 >      3  2

            804    787   -382      < 32, 61, 18 >      1  5
            894    688   -373      < 29, 63, 22 >      1  5
            953    946   -456      < 38, 45, 4 >      3  4
           1034    492   -317      < 37, 51, 8 >      1  5
           1062    443   -296      < 29, 63, 22 >      5  1
           1102    363   -256      < 38, 45, 4 >      1  5
           1123    314   -228      < 32, 61, 18 >      5  1
           1159   1046   -528      < 32, 61, 18 >      1  6
           1179    118    -88      < 38, 45, 4 >      5  1
           1188     19      2      < 37, 51, 8 >      5  1
           1199   1002   -524      < 29, 63, 22 >      1  6

well, then. I put in some blank lines..