[Math] Is this sum of reciprocals of zeta zeros correct

analytic-number-theorynt.number-theoryriemann-zeta-function

I am trying to find or get a numerical approximation of
$$ \sum_{\rho \text{ non-trivial zeros of } \zeta} \frac{1}{\rho} $$

In The Riemann Hypothesis: Arithmetic and Geometry Lagarias gives the identity:

$$\hat{\zeta}(s) := \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})\zeta(s)$$

$$ \frac{\hat{\zeta}^\prime(s)} {\hat{\zeta}(s)} = \frac{d}{ds} [ \log \hat{\zeta}(s) ] = -\frac{1}{s} – \frac{1}{s-1} + {\sum_{\rho \text{ zeros of } \zeta }}^\prime \frac{1}{s-\rho} \qquad(1)$$

where the prime indicates the zeros must be summed in pairs $\rho,1-\rho$

Q1 Does the last sentence mean that the sum is over the non-trivial zeros?

Maple gives:
$$\lim_{s \to 0} {\sum_{\rho \text{ zeros of } \zeta }}^\prime \frac{1}{s-\rho} = -\gamma + \frac{1}{2} \log\left(\pi\right) + \log\left(2\right) – 1$$

If the above result is correct, is it true that:

$$ \sum_{\rho \text{ non-trivial zeros of } \zeta} \frac{1}{\rho} = \gamma – \frac{1}{2} \log\left(\pi\right) – \log\left(2\right) + 1 $$

EDIT As Micah Milinovich kindly answerd the above is wrong.

Trying to save the quiestion, is it true that:
$$ \sum_{\rho} \frac{1}{\rho (1{-}\rho)} = \gamma – \frac{1}{2} \log\left(\pi\right) – \log\left(2\right) + 1 $$

Assuming RH $1-\rho = \bar{\rho}$ and the LHS is $\sum_{\rho} \frac{1}{|\rho|^2}$

According to RH Equivalence 5.3. $$\sum_{\rho} \frac{1}{\rho (1{-}\rho)}=\sum_{\rho} \frac{1}{|\rho|^2} = 2 + \gamma – \log 4\pi$$.

And the constants still don't match.

Best Answer

To answer your modified question, according to Mathematica:

$$ \lim_{s\to 0} \left(\frac{\hat{\zeta}'}{\hat{\zeta}}(s)+\frac{1}{s}\right) = -\frac{\gamma}{2} + \tfrac{1}{2}\log(4\pi).$$

This implies that

$${\sum_\rho}'\frac{1}{\rho} = \sum_{\Im \rho >0} \frac{1}{\rho(1-\rho)}= 1 +\frac{\gamma}{2} - \tfrac{1}{2}\log(4\pi). $$

Therefore $$\sum_{ \rho } \frac{1}{\rho(1-\rho)} = 2 \sum_{\Im \rho >0} \frac{1}{\rho(1-\rho)}= 2 +\gamma - \log(4\pi).$$