[Math] an identity for a sum over partitions

co.combinatoricsenumerative-combinatoricsnt.number-theorypartitions

Write an integer partition $\lambda\vdash n$ in two different ways:

(1) $\lambda=\lambda_1\geq\lambda_2\geq\lambda_3\cdots\geq\lambda_k\geq1$

(2) $\lambda=1^{m_1}2^{m_2}3^{m_3}\cdots n^{m_n}$ for some $m_i\geq0$.

Denote the length of a partition, compatible with (1) and (2), by $m_1+m_2+\cdots+m_n=k$.

QUESTION. According to enough experimental evidence,
$$\sum_{\lambda\vdash n}(-1)^{n-k}\frac{k!}{m_1!\cdots m_n!}\prod_{i=1}^k\binom{n+1}{\lambda_i}=\binom{2n}n.$$
Is it true? If so, any proof?

Best Answer

Multiply the whole equality by $(-1)^n$.

First of all, notice that $k\choose m_1,\dots,m_k$ is the number of ways to permute the numbers $\lambda_1,\dots,\lambda_k$, so the left-hand side equals $$ L=\sum_{\lambda_i\geq 1, \; \lambda_1+\dots+\lambda_k=n} (-1)^k\prod_{i=1}^k{n+1\choose \lambda_i}. $$ Denote $$ S(x)=\sum_{j=1}^{n+1} {n+1\choose j}x^l=(1+x)^{n+1}-1. $$ Then, due to the formula above, $L$ is the coefficient of $x^n$ in $$ 1-S(x)+S(x)^2-\dots=\frac1{1+S(x)}=\frac1{(1+x)^{n+1}} =\sum_{i=0}^\infty(-1)^i{n+i\choose i}x^i, $$ thus $L=(-1)^n{2n\choose n}$, as desired.

Related Question