[Math] A limit involving binomial coefficients: $\lim_{n\to\infty} (-1)^n\sum_{k=1}^n(-1)^k{n\choose k}^{-1/k}=\frac12$

binomial-coefficientslimits-and-convergence

Experimentation suggests the limit
$$\lim_{n\rightarrow\infty} (-1)^n\sum_{k=1}^n(-1)^k{n\choose k}^{-1/k}=\frac{1}{2}\ .$$
Does somebody have an idea for (a start of) a proof?

Added: There seem to be variations:
$$\lim_{n\rightarrow\infty} (-1)^n\sum_{k=1}^n(-1)^k{2n\choose k}^{-1/k}=\frac{1}{8}\ ,$$
$$\lim_{n\rightarrow\infty} (-1)^n\sum_{k=1}^n(-1)^k{3n\choose k}^{-1/k}=\frac{2}{27}\ ,$$
etc.

Moreover, the exponent $-1/k$ in the original identity can seemingly be replaced by $-2/k$, $-3/k$ (by $-\alpha/k$
for strictly positive $\alpha$?) without changing the limit value.

Update: Given a strictly positive rational number $\frac{p}{q}\leq 1$ (with coprime natural integers $p,q$), there is perhaps
a number $\lambda(p/q)$ such that
$$\lim_{n\rightarrow\infty}(-1)^n\sum_{k=1}^{pn}(-1)^k{qn\choose k}^{-\alpha/k}=
\frac{(\lambda(p/q))^\alpha}{2}$$
for $\alpha$ real and strictly positive.
A few values for $\lambda$ are seemingly
$$\lambda\left(\frac{1}{3}\right)=\frac{4}{27},\ \lambda\left(\frac{1}{2}\right)=\frac{1}{4},\ \lambda\left(\frac{2}{3}\right)=\frac{2}{3\sqrt{3}},\ \lambda\left(1\right)=1\ .$$
Two more conjectures: $\lambda\left(\frac{1}{q}\right)=\frac{(q-1)^{q-1}}{q^q}$
and $\lambda(x)^x=\lambda(1-x)^{1-x}$ for rational $x$ in $(0,1)$.

The correct formula for $\lambda$ is perhaps $\lambda(x)=x(1-x)^{(1-x)/x}$.

Best Answer

Off-the-wall suggestion... Take $n$ even, I call it $2n$ now. Then asymptotically as $n \to \infty$ $$ \binom{2n}{2n-2j-1}^{-1/(2n-2j-1)} - \binom{2n}{2n-2j}^{-1/(2n-2j)} \sim \frac{1}{2n}\log \frac{2n}{2j-1} $$ and the sum $$ \frac{1}{2n}\sum_{j=1}^{n}\log\frac{2n}{2j-1} $$ is a Riemann sum for the integral $$ \frac{1}{2}\int_0^1 \log\frac{1}{t}\;dt = \frac{1}{2} . $$


Added Feb.3 I said it was off-the-wall. The asymptotic expansion is from Maple, like this:

     asymptotics

Related Question