[Math] A gamma function identity

ca.classical-analysis-and-odesho.history-overviewnt.number-theory

In some of my previous work on mean values of Dirichlet L-functions, I came upon the following identity for the Gamma function:
\begin{equation}
\frac{\Gamma(a) \Gamma(1-a-b)}{\Gamma(1-b)}
+ \frac{\Gamma(b) \Gamma(1-a-b)}{ \Gamma(1-a)}
+ \frac{\Gamma(a) \Gamma(b)}{ \Gamma(a+b)} =
\pi^{\frac12}
\frac{\Gamma\left(\frac{ 1-a-b}{2}\right) }{\Gamma\left(\frac{a+b}{2}\right)}
\frac{\Gamma\left(\frac{a}{2}\right)}{\Gamma\left(\frac{1-a}{2}\right)}
\frac{\Gamma\left(\frac{b}{2}\right)}{\Gamma\left(\frac{1-b}{2}\right)}.
\end{equation}
As is often the case, once one knows such a formula should be true then it is easy to prove it. I give my proof below. My questions are 1) Has this formula been observed before? I have no idea how to search the literature for such a thing. 2) Is there a better proof? (Of course this is totally subjective, but one thing that would please me would be to avoid trigonometric functions since they do not appear in the formula.)

Proof.
Using
\begin{equation}
\frac{\Gamma(\frac{s}{2})}{\Gamma(\frac{1-s}{2})} = \pi^{-\frac12} 2^{1-s} \cos({\textstyle \frac{\pi s}{2}}) \Gamma(s),
\end{equation}
the right hand side is
\begin{equation}
2 \frac{\cos(\frac{\pi a}{2}) \cos(\frac{\pi b}{2}) \Gamma(a) \Gamma(b)}{\cos(\frac{\pi (a + b)}{2}) \Gamma(a+b)}.
\end{equation}
On the other hand, the left hand side is
\begin{equation}
\frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)}
\left(
\frac{\Gamma(a+b) \Gamma(1-a-b)}{\Gamma(b) \Gamma(1-b)}
+ \frac{\Gamma(a+b) \Gamma(1-a-b)}{\Gamma(a) \Gamma(1-a)}
+ 1
\right),
\end{equation}
which becomes after using $\Gamma(s) \Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$,
\begin{equation}
\frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)}
\left(\frac{\sin(\pi a) + \sin( \pi b) + \sin(\pi(a + b))}{\sin(\pi(a+b))} \right).
\end{equation}
Using trig formulas, we get that this is
\begin{equation}
2 \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)} \frac{\sin(\frac{\pi}{2}(a+b)) \cos(\frac{\pi}{2}(a-b)) + \sin(\frac{\pi}{2}(a+b)) \cos(\frac{\pi}{2}(a+b)) }{\sin(\pi(a+b))}
\end{equation}
I think I've run out of space? The rest is easy trig.

Best Answer

This is merely a variation of your own proof, Matt, but I believe it makes things clearer.

The first step is to define $c:=1-a-b$. Then, your identity takes the form

$\dfrac{\Gamma\left(b\right)\Gamma\left(c\right)}{\Gamma\left(b+c\right)}+\dfrac{\Gamma\left(c\right)\Gamma\left(a\right)}{\Gamma\left(c+a\right)}+\dfrac{\Gamma\left(a\right)\Gamma\left(b\right)}{\Gamma\left(a+b\right)}=\pi^{1/2}\dfrac{\Gamma\left(\dfrac{a}{2}\right)}{\Gamma\left(\dfrac{1-a}{2}\right)}\cdot\dfrac{\Gamma\left(\dfrac{b}{2}\right)}{\Gamma\left(\dfrac{1-b}{2}\right)}\cdot\dfrac{\Gamma\left(\dfrac{c}{2}\right)}{\Gamma\left(\dfrac{1-c}{2}\right)}$

for $a+b+c=1$. This is symmetric in $a$, $b$, $c$, which means we are way less likely to go insane during the following computations.

Now, using the formula

$\dfrac{\Gamma\left(\dfrac{s}{2}\right)}{\Gamma\left(\dfrac{1-s}{2}\right)}=\pi^{-1/2}2^{1-s}\cdot\cos\dfrac{\pi s}{2}\cdot\Gamma\left(s\right)$,

the right hand side simplifies to

$\pi^{-1}\cdot 4\cdot\cos\dfrac{\pi a}{2}\cdot\Gamma\left(a\right)\cdot\cos\dfrac{\pi b}{2}\cdot\Gamma\left(b\right)\cdot\cos\dfrac{\pi c}{2}\cdot\Gamma\left(c\right)$

(here we used $2^{3-a-b-c}=2^{3-1}=4$), so the identity in question becomes

$\dfrac{\Gamma\left(b\right)\Gamma\left(c\right)}{\Gamma\left(b+c\right)}+\dfrac{\Gamma\left(c\right)\Gamma\left(a\right)}{\Gamma\left(c+a\right)}+\dfrac{\Gamma\left(a\right)\Gamma\left(b\right)}{\Gamma\left(a+b\right)}$ $ = \pi^{-1}\cdot 4\cdot\cos\dfrac{\pi a}{2}\cdot\Gamma\left(a\right)\cdot\cos\dfrac{\pi b}{2}\cdot\Gamma\left(b\right)\cdot\cos\dfrac{\pi c}{2}\cdot\Gamma\left(c\right)$.

Dividing by $\Gamma\left(a\right)\Gamma\left(b\right)\Gamma\left(c\right)$ on both sides, we get

$\dfrac{1}{\Gamma\left(a\right)\Gamma\left(b+c\right)}+\dfrac{1}{\Gamma\left(b\right)\Gamma\left(c+a\right)}+\dfrac{1}{\Gamma\left(c\right)\Gamma\left(a+b\right)}=4\pi^{-1}\cdot\cos\dfrac{\pi a}{2}\cdot\cos\dfrac{\pi b}{2}\cdot\cos\dfrac{\pi c}{2}$.

Since $b+c=1-a$, $c+a=1-b$, $a+b=1-c$, this rewrites as

$\dfrac{1}{\Gamma\left(a\right)\Gamma\left(1-a\right)}+\dfrac{1}{\Gamma\left(b\right)\Gamma\left(1-b\right)}+\dfrac{1}{\Gamma\left(c\right)\Gamma\left(1-c\right)}=4\pi^{-1}\cdot\cos\dfrac{\pi a}{2}\cdot\cos\dfrac{\pi b}{2}\cdot\cos\dfrac{\pi c}{2}$.

Now, using the formula $\dfrac{1}{\Gamma\left(z\right)\Gamma\left(1-z\right)}=\pi^{-1}\sin{\pi z}$ on the left hand side, and dividing by $\pi^{-1}$, we can simplify this to

$\sin{\pi a}+\sin{\pi b}+\sin{\pi c}=4\cdot\cos\dfrac{\pi a}{2}\cdot\cos\dfrac{\pi b}{2}\cdot\cos\dfrac{\pi c}{2}$.

Since $a+b+c=1$, we can set $A=\pi a$, $B=\pi b$, $C=\pi c$ and then have $A+B+C=\pi$. Our goal is to show that

$\sin A+\sin B+\sin C=4\cdot\cos\dfrac{A}2\cdot\cos\dfrac{B}2\cdot\cos\dfrac{C}{2}$

for any three angles $A$, $B$, $C$ satisfying $A+B+C=\pi$.

Now this can be proven in different ways:

1) One is by writing $C=\pi-A-B$ and simplifying using trigonometric formulae; this is rather boring and it breaks the symmetry.

2) Another one is using complex numbers: let $\alpha=e^{iA/2}$, $\beta=e^{iB/2}$ and $\gamma=e^{iC/2}$. Then,

$\sin A+\sin B+\sin C=4\cdot\cos\dfrac{A}2\cdot\cos\dfrac{B}2\cdot\cos\dfrac{C}{2}$

becomes

(1) $\dfrac{\alpha^2-\alpha^{-2}}{2i}+\dfrac{\beta^2-\beta^{-2}}{2i}+\dfrac{\gamma^2-\gamma^{-2}}{2i} = 4\cdot\dfrac{\alpha+\alpha^{-1}}{2}\cdot\dfrac{\beta+\beta^{-1}}{2}\cdot\dfrac{\gamma+\gamma^{-1}}{2}$.

Oh, and $A+B+C=\pi$ becomes $\alpha\beta\gamma=2i$. Now proving (1) is just a matter of multiplying out the right hand side and looking at the $8$ terms (two of them, namely $\alpha\beta\gamma$ and $\alpha^{-1}\beta^{-1}\gamma^{-1}$, cancel out, being $i$ and $-i$, respectively).

3) Here is how I would have done it 8 years ago: We can WLOG assume that $A$, $B$, $C$ are the angles of a triangle (this means that $A$, $B$, $C$ lie in the interval $\left[0,\pi\right]$, additionally to satisfying $A+B+C=\pi$), because everything is analytic (or by casebash). We denote the sides of this triangle by $a$, $b$, $c$ (so we forget about the old $a$, $b$, $c$), its semiperimeter $\dfrac{a+b+c}{2}$ by $s$, its area by $\Delta$ and its circumradius by $R$. Then, $\sin A=\dfrac{a}{2R}$ (by the Extended Law of Sines) and similarly $\sin B=\dfrac{b}{2R}$ and $\sin C=\dfrac{c}{2R}$, so that $\sin A+\sin B+\sin C=\dfrac{a}{2R}+\dfrac{b}{2R}+\dfrac{c}{2R}=\dfrac{a+b+c}{2R}=\dfrac{s}{R}$. On the other hand, one of the half-angle formulas shows that $\cos\dfrac{A}2=\sqrt{\dfrac{s\left(s-a\right)}{bc}}$, and similar formulas hold for $\cos\dfrac{B}2$ and $\cos\dfrac{C}2$, so that

$4\cdot\cos\dfrac{A}2\cdot\cos\dfrac{B}2\cdot\cos\dfrac{C}{2}$

$=4\cdot\sqrt{\dfrac{s\left(s-a\right)}{bc}}\cdot\sqrt{\dfrac{s\left(s-b\right)}{ca}}\cdot\sqrt{\dfrac{s\left(s-c\right)}{ab}}$

$=\dfrac{4s}{abc}\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}$.

Now, $\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}=\Delta$ (by Heron's formula) and $\Delta=\dfrac{abc}{4R}$ (by another formula for the area of the triangle), so tis becomes

$4\cdot\cos\dfrac{A}2\cdot\cos\dfrac{B}2\cdot\cos\dfrac{C}{2}=\dfrac{4s}{abc}\cdot\dfrac{abc}{4R}=\dfrac{s}{R}$.

This is exactly what we got for the left hand side, qed.

Related Question