Combinatorics – Interpretation of Matrix and Its Determinant

co.combinatoricsenumerative-combinatoricslinear algebrapolynomialsreference-request

Let $n\geq1$ be an integer. Take the matrix $M(n)$, with entries, $M_{i,j}(n)=\sin\left(\frac{(i+j)\pi}2\right)$ if $i\neq j$ and $M_{i,i}(n)=x_i$.

I wish to ask (this question has been modified from my previous post):

QUESTION. Is there any interpretation/meaning to the matrix $M(n)$ and its determinant?
$$\det M(n)=x_1x_2\cdots x_n-\sum_{\substack{1\leq i_1<\cdots<i_{n-2}\leq n\\
\binom{n+1}2-(i_1+\cdots+i_{n-2})\,\equiv\, 1\,\, \text{mod}\, 2}}x_{i_1}\cdots x_{i_{n-2}}.$$

Example. If $n=4$ then (updated using Fedor's rewrite)
\begin{align*}
\det\begin{pmatrix} x_1&-1&0&1 \\ -1&x_2&1&0 \\ 0&1&x_3&-1 \\ 1&0&-1&x_4 \end{pmatrix}
&=x_1x_2x_3x_4-x_1x_2-x_1x_4-x_2x_3-x_3x_4 \\
&=x_1x_2x_3x_4\left(1-(x_1^{-1}+x_3^{-1})(x_2^{-1}+x_4^{-1})\right).
\end{align*}

Best Answer

Well, \begin{align*} \sum_{\substack{1\leq i_1<\cdots<i_{n-2}\leq n\\ \binom{n+1}2-(i_1+\cdots+i_{n-2})\,\equiv\, 1\,\, \text{mod}\, 2}}x_{i_1}\cdots x_{i_{n-2}} &=x_1\cdots x_n\cdot \left(\sum_{i+j\,\text{is odd}}(x_ix_j)^{-1}\right)\\ &=x_1\cdots x_n(x_1^{-1}+x_3^{-1}+\ldots)(x_2^{-1}+x_4^{-1}+\ldots). \end{align*}

Related Question