Functional Analysis – Infinite-Dimensional Analogue of Positive-Negative Splitting Implies Non-Degeneracy

differential-operatorsfa.functional-analysishilbert-spacesoperator-theory

(This question is related to Splitting a space into positive and negative parts but different.)

Given a finite-dimensional vector space $V$ over $\mathbb{R}$, what I call a "positive-negative splitting" for a symmetric bilinear form $\langle\cdot,\cdot\rangle$ on $V$ is a splitting $V=V_+\oplus V_-$ (not necessarily $\langle\cdot,\cdot\rangle$-orthogonal) such that the restrictions of $\langle\cdot,\cdot\rangle$ to $V_+$ and $V_-$ are positive definite and negative definite, respectively.

If there exists such a splitting, then $\langle\cdot,\cdot\rangle$ is written in matrix form as
$$
\langle x,y\rangle=
x^\mathsf{T}
\begin{pmatrix}
A_+&B\\
B^\mathsf{T}&A_-
\end{pmatrix}
y,
$$

where $A_+$ and $A_-$ are positive and negative definite symmetric matrices, respectively. We can calculate the determinant of the above block matrix by Gauss elimination and get
$$
\det
\begin{pmatrix}
A_+&B\\
B^\mathsf{T}&A_-
\end{pmatrix}=\det(A_+)\det(A_-\!-B^\mathsf{T}A_+^{-1}B)\neq0
$$

(note that $A_-\!-B^\mathsf{T}A_+^{-1}B$ is negative definite). So $\langle\cdot,\cdot\rangle$ is non-degenerate in this case.

My question is:

For a Hilbert space $(\mathcal{H},(\cdot|\cdot))$ and a bilinear form $\langle\cdot,\cdot\rangle:=(A\cdot|\cdot)$ on $\mathcal{H}$ given by a self-adjoint operator $A:\mathcal{H}\to\mathcal{H}$, does the existence of a positive-negative splitting still imply that $\langle\cdot,\cdot\rangle$ is non-degenerate?

Best Answer

A simple proof:

Assume $\mathcal{H}=\mathcal{H}_+\oplus\mathcal{H}_-$, with $( A u| u)>0$ (resp. $<0$) for all nonzero $u\in\mathcal{H}_+$ (resp. $u\in\mathcal{H}_-$). We want to show $\ker A=0$. To this end, assume $Au=0$ and write $u=u_++u_-$ with $u_\pm\in\mathcal{H}_\pm$. If either $u_+$ or $u_-$ is zero, the assumption easily implies $u=0$. Otherwise, we have $$ 0=(Au|u_+)=(Au_+|u_+)+(Au_-|u_+)>(Au_-|u_+), $$ $$ 0=(Au|u_-)=(Au_+|u_-)+(Au_-|u_-)<(Au_+|u_-). $$ In view of the self-adjointness, we get a contradiction.

Related Question