Gronwall’s inequality in discretized time

inequalitiesreal-analysis

$
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\EE}{\mathbb{E}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\PPP}{\mathscr{P}}
\newcommand{\KKK}{\mathscr{K}}
\newcommand{\eps}{\varepsilon}
\newcommand{\diff}{\mathop{}\!\mathrm{d}}
$

We fix $T \in (0, \infty)$ and let $\TT := [0, T]$. For $n\in \NN^*$, let $\eps_n := T/n$ be the time step and $f_n : \TT \to \RR_+$ bounded measurable. We define $\tau^n_t := \lfloor t/ \eps_n \rfloor \eps_n$ for $t \in \TT$. We assume that
$$
f_n(t) \le f_n(0) + \int_0^t f_n (\tau^n_s) \diff s,
\quad \forall t \in \TT.
$$

Is there a constant $C>0$ independent of $n$ such that $\sup_{t \in \TT} f_n (t) \le C f_n (0)$?

Thank you so much for your elaboration!

Best Answer

Let $g_n(t):=f_n (\tau^n_t)$; here and in what follows, $t\in[0,T]$. Then $$g_n(t)=f_n (\tau^n_t)\le f_n(0)+\int_0^{\tau^n_t} g_n(s)\,ds \le f_n(0)+\int_0^t g_n(s)\,ds,$$ because $\tau^n_t\le t$ and $g_n\ge0$. So, by Grönwall's inequality, $$g_n(t)\le f_n(0)e^t$$ and hence $$f_n(t)\le f_n(0)+\int_0^t g_n(s)\,ds \le f_n(0)e^t\le Cf_n(0),$$ where $C:=e^T$. $\quad\Box$