Number Theory – How to Extract Constant Terms Directly?

co.combinatoricsenumerative-combinatoricsnt.number-theoryreference-request

$\DeclareMathOperator\CT{CT}$
Let $\CT_t(f(t))$ denote the constant term of the Laurent polynomial of $f(t)$.

Define the two functions $F(x_1,\dots,x_n)$ and $G(y)$ by
$$F:=\prod_{i=1}^nx_i^{-1}(1-x_i)^{-2}\prod_{1\leq i<j\leq n}
(1-x_i-x_j)^{-1} \qquad \text{and} \qquad
G:=n!\cdot y^{-n}e^{(n+1)y+y^2/2}.$$

I like to ask:

QUESTION. Is the following true? It would be great if there is a direct way to compare these two.
$$\CT_{x_1}\CT_{x_2}\cdots\CT_{x_n}\left(F(x_1,\dots,x_n)\right)=\CT_y\left(G(y)\right).$$

NOTE 1. The sequence on the right-hand side is available at the OEIS as A301741 with an explicit evaluation.

NOTE 2. Incidentally, we also have (a consequence of Han's formula proved here)
$$\CT_{x_1}\CT_{x_2}\cdots\CT_{x_n}\left(F(x_1,\dots,x_n)\right)=
\sum_{\lambda\vdash n}f^{\lambda}\prod_{u\in\lambda}
\frac{(n+2)^{h_u}+n^{h_u}}{(n+2)^{h_u}-n^{h_u}};$$

where $h_u$ is the hook-length of cell $u$ (in the Young diagram of $\lambda$) and $f^{\lambda}$ is the number of Standard Young Tableau of shape $\lambda$ (given by the hook-length formula).

NOTE 3. A cute analogue: let $f:=\prod_{i=1}^nx_i^{-1}(1-x_i)^{-1}\prod_{1\leq i<j\leq n}(1+x_i+x_j)$ and $g:=n!\cdot y^{-n}e^{ny-y^2/2}$. Then,
$$\CT_{x_1}\CT_{x_2}\cdots\CT_{x_n}\left(f(x_1,\dots,x_n)\right)
=\CT_y(g(y)).$$

Proof. Fedor's reasoning applies (it'd be nice to employ Richard's too)
\begin{align*}
{\rm CT}\, f&=
[x_1\ldots x_n] \prod_i (1-x_i)^{-1}\prod_{i<j}(1+x_i+x_j) \\
&=[x_1\ldots x_n]\prod_i\exp(x_i)\prod_{i<j}\exp(x_i+x_j-x_ix_j)\\
&=[x_1\ldots x_n] \exp\left(\sum x_i+\sum_{i<j}(x_i+x_j-x_ix_j)\right)\\
&=[x_1\ldots x_n]\exp\left(n\cdot S-S^2/2\right).
\end{align*}

Best Answer

For power series $u(x_1,\ldots,x_n),v(x_1,\ldots,x_n)$ call $u,v$ similar and write $u\sim v$ if all monomials $\prod x_i^{c_i}$ with $c_i\in \{0,1\}$ have equal coefficients in $u,v$. In other words, if $u$ is congruent to $v$ modulo the ideal generated by $x_i^2$'s. Note that this similarity respects addition and multiplucation, and that $(1-x_i)^{-1}\sim \exp(x_i)$ and $(1-x_i-x_j)^{-1}\sim 1+x_i+x_j+2x_ix_j\sim\exp(x_i+x_j+x_ix_j)$. Thus \begin{align*} {\rm CT}\, F&= [x_1\ldots x_n] \prod_i (1-x_i)^{-2}\prod_{i<j}(1-x_i-x_j)^{-1}\\&= [x_1\ldots x_n]\prod_i\exp(2x_i)\prod_{i<j}\exp(x_i+x_j+x_ix_j)\\&=[x_1\ldots x_n] \exp\left( \sum 2x_i+\sum_{i<j}(x_i+x_j+x_ix_j) \right)\\ &=[x_1\ldots x_n]\exp\left((n+1)S+S^2/2\right), \end{align*} where $S=x_1+\ldots+x_n$ (since $S^2/2\sim \sum_{i<j} x_ix_j$). Now if we expand $\exp\left((n+1)S+S^2/2\right)$ as a power series in $S$, we get $[x_1\ldots x_n]S^n=n!$ and $[x_1\ldots x_n]S^k=0$ for $k\ne n$, thus your identity.