Bounding supremum norm in terms of gradient L2-norm using a Poincare-like inequality

fa.functional-analysisnormssobolev-spaces

Suppose $f$ is a Lipschitz continuous real-valued function over a bounded domain $\Omega \subset \mathbb{R}^d$ with smooth boundary, and let $\overline{f} := \frac{1}{|\Omega|}\int_\Omega f(x) dx$. Is it possible to upper bound $\|f-\overline{f}\|_{L^\infty(\Omega)}$ in terms of $\|\nabla f\|_{L^2(\Omega)}$ using a generalized Poincare inequality or a related inequality? Of course, standard Poincare gives:
$$\|f-\overline{f}\|_{L^2(\Omega)} \leq C\|\nabla f \|_{L^2(\Omega)}$$
but can this be "upgraded" to an $L^\infty$-norm bound in terms of $\|\nabla f\|_{L^2(\Omega)}$ using the fact that $f$ is Lipschitz?

This question asks something similar:
Bounding supremum norm of Lipschitz function by L1 norm
and I think it might be possible to string together an answer from the replies there. But I wonder if there is a more direct approach, using, for example, the Gagliardo-Nirenberg interpolation inequality. However, all versions of Gagliardo-Nirenberg for bounded domains that I have found do not allow for $p=\infty$ norm control (see, e.g., https://arxiv.org/abs/2110.12967).

Best Answer

For $p>\max(2,d)$ you have by Sobolev embedding $$\|f-\overline{f}\|_\infty \lesssim_{\Omega,p} \|f-\overline{f}\|_p + \|\nabla f\|_p.$$ The interpolation $L^p(\Omega) = [L^2(\Omega),L^\infty(\Omega)]_\theta$ with $\theta\in(0,1)$ entails $$\|f-\overline{f}\|_\infty \lesssim_{\Omega,p} \|f-\overline{f}\|_2^\theta \|f-\overline{f}\|_\infty^{1-\theta} + \|\nabla f\|_2^\theta\|\nabla f\|_\infty^{1-\theta}.$$ Now, you can absorb part of the first term of r.h.s. in the l.h.s. with Young's inequality $a b \leq \theta a^{1/\theta} + (1-\theta) b^{1/(1-\theta)}$ : $$\|f-\overline{f}\|_\infty \lesssim_{\Omega,p} \|f-\overline{f}\|_2 + \|\nabla f\|_2^\theta \|\nabla f\|_\infty^{1-\theta}.$$ The usual Poincaré-Wirtinger inequality allows to write $$\|f-\overline{f}\|_\infty \lesssim_{\Omega,p} \|\nabla f\|_2 + \|\nabla f\|_2^\theta \|\nabla f\|_\infty^{1-\theta},$$ and this implies what you hope for, because you can write (but this is rough ...) $$\|\nabla f\|_2 = \|\nabla f\|_2^\theta \|\nabla f\|_2^{1-\theta}\leq \|\nabla f\|_2^\theta \|\nabla f\|_\infty^{1-\theta}.$$