Wolfram Alpha wrong Integral

integrationwolfram alpha

I want to evaluate the following integral:
$$\int_{-\infty}^0\frac{R}{\sqrt{x^2+R^2}^3}\mathrm{d}x$$
If I do it with the substitution $x=R\tan(\varphi)$ I get:
$$\int_{-\infty}^0\frac{R}{\sqrt{x^2+R^2}^3}\mathrm{d}x=\frac{1}{R}$$
Which is the same like Wolfram Alpha. But if I use the antiderivative $F(x)=\frac{x}{R\sqrt{x^2+R^2}}$ I get:
$$\int_{-\infty}^0\frac{R}{\sqrt{x^2+R^2}^3}\mathrm{d}x=\underbrace{F(0)}_{=0}-F(-\infty)=-\frac{1}{R\sqrt{1+\frac{R^2}{x^2}}}\bigg|_{x=-\infty}=-\frac{1}{R}$$
So where is the mistake?

Best Answer

The first approach gets $\frac1R\int_{-\pi/2}^0\cos\varphi d\varphi=\frac1R$; the second gets$$\frac1R[x(x^2+R^2)^{-1/2}]_{-\infty}^0=-\frac1R\lim_{x\to-\infty}x(x^2+R^2)^{-1/2}=-\frac1R\cdot-1=\frac1R,$$contra your sign error. You mistakenly rewrote $x(x^2+R^2)^{-1/2}$ as $(1+R^2/x^2)^{-1/2}$, rather than $-(1+R^2/x^2)^{-1/2}$, for $x<0$. Bear in mind $\frac{\sqrt{a^2+b}}{a}=\frac{\sqrt{1+b/a^2}}{\operatorname{sgn}a}$ for $a\ne0$.