Will we have convergence to the Riemann integral

calculusreal-analysisriemann sumriemann-integration

Assume you have K functions $f_1,f_2,\ldots,f_K$, we assume that each of the functions is Riemann-integrable, and that their product is Riemann-integrable.

We also assume that we have a sequence of partitions of the set $[a,b]$ that is a function of $m$, where the norm of the partition goes to zero as $m$ goes to infinity. $N_m$ is the number of subintervals for each $m$.

For each $j_m \in \{0,\ldots,N_m-1\}$ and $i \in \{1,\ldots,K\}$ we assume that $c_{j_m}^{(i)}$ is in the corresponding subinterval. We define $\Delta x_{j_m}$ as the length of the subinterval.

Will then the sequence in $m$ defined by:

$\sum\limits_{j_m=0}^{N_m-1}f_1\left(c_{j_m}^{(1)}\right)f_2\left(c_{j_m}^{(2)}\right)\cdots f_K\left(c_{j_m}^{(K)}\right)\Delta x_{j_m}$

converge to the corresponding Riemann-integral?

The problem here is that is not a Riemann-sum since $c_{j_m}^{(1)}, c_{j_m}^{(2)},\ldots, c_{j_m}^{(K)}$ might differ(but they are still in the same subinterval).

Best Answer

The idea is pretty clear, but we just have to write a lot, and use a lot of notation.

Definitions. A partition of $[a,b]$ is a finite sequence $\pi = (a_j)_{j=0}^J$ with $a=a_0 < a_1 < \cdots < a_J = b$.
The norm of $\pi$ is $\|\pi\| = \max_{1 \le j \le J} |a_j-a_{j-1}|$.
A tagged partition of $[a,b]$ is a pair $(\pi,\gamma)$ where $\pi = (a_j)_{j=0}^J$ is a partition of $[a,b]$ and the finite squence $\gamma = (c_j)_{j=1}^J$ satisfies $a_{j-1} \le c_j \le a_j$ for all $j$.

Let $f : [a,b] \to \mathbb R$. Let $\pi = (a_j)_{j=0}^J$ be a partition of $[a,b]$.
The upper sum is $$ U(f,\pi) = \sum_{j=1}^J M_j(f)\;\cdot(a_j-a_{j-1})\qquad\text{where}\qquad M_j(f) = \sup \{f(x) : a_{j-1} \le x \le a_j\} . $$
The lower sum is $$ L(f,\pi) = \sum_{j=1}^J m_j(f)\;\cdot(a_j-a_{j-1})\qquad\text{where}\qquad m_j(f) = \inf \{f(x) : a_{j-1} \le x \le a_j\} . $$

Let $(\pi,\gamma)$ be a tagged partition. The Riemann sum is $$ R(f,\pi,\gamma) = \sum_{j=1}^J f(c_j)\cdot (a_j-a_{j-1}) $$

We say that $f$ is Riemann integrable, and its integral is $V$ iff
for every $\epsilon > 0$ there exists $\delta > 0$ such that for every tagged partition $(\pi,\gamma)$ of $[a,b]$, if $\|\pi\| < \delta$, then $$ \big |R(f,\pi,\gamma) - V \big| < \epsilon . $$

Alternatively (from a Cauchy criterion), $f$ is Riemann integrable if and only if: for every $\epsilon > 0$ there exists $\delta > 0$ such that for every partition $\pi$ of $[a,b]$, if $\|\pi\| < \delta$ then $$ U(f,\pi) - L(f,\pi) < \epsilon . $$ If so, then the integral $V$ is the unique number with $L(f,\pi) \le V \le U(f,\pi)$ for all partitions $\pi$ of $[a,b]$.


Theorem A
Let $f_1,f_1,\dots, f_K$ be functions on $[a,b]$ such that $f_1, f_2,\dots, f_K$ and the product $F = f_1 f_2\cdots f_K$ are all Riemann integrable.

Claim: for any $\epsilon > 0$ there exists $\delta > 0$ such that: if $\pi$ is a partition of $[a,b]$ and $\|\pi\| < \delta$ and $\gamma^{(k)}=(c_j^{(k)})_{j=1}^J$ , $1 \le k \le K$, are $K$ choices of tags so that for all $k$, the pair $(\pi,\gamma^{(k)})$ is a tagged partition of $[a,b]$, then $$ \left|U(F,\pi) - \sum_{j=1}^J f_1(c_j^{(1)}) f_2(c_j^{(2)})\cdots f_K(c_j^{(K)})\cdot (a_j-a_{j-1})\right| < \epsilon \tag1$$ and $$ \left|\sum_{j=1}^J f_1(c_j^{(1)}) f_2(c_j^{(2)})\cdots f_K(c_j^{(K)})\cdot (a_j-a_{j-1})-L(F,\pi)\right| < \epsilon \tag2$$ and $$ U(F,\pi) - L(F,\pi) < \epsilon. \tag3$$


Case 1: All $f_k \ge 0$.
So, $\epsilon > 0$ is given. Since all the functions $f_k$ are Riemann integrable, they are bounded. There is a single bound $A > 0$ with $$ |f_k(x)|\le A \qquad\text{for}\qquad k=1,\dots,K,\qquad a\le x \le b . $$

Let $$\epsilon' = \frac{\epsilon}{K A^{K-1}}.$$ Since $f_1,\dots,f_K$ are all Riemann integrable, there is $\delta > 0$ so that for any partition $\pi = (a_j)_{j=0}^J$ of $[a,b]$, if $\|\pi\| < \delta$, then $$ U(f_k,\pi) - L(f_k,\pi) < \epsilon'\qquad\text{for } k=1,\dots,K . $$ Let $(\pi, \gamma^{(k)})$ be tagged partitions as above. Assume $\|\pi\| < \delta$. Write $\widetilde{M}_j = M_j(f_1)M_j(f_2)\cdots M_j(f_K)$ and $\widetilde{m}_j = m_j(f_1)m_j(f_2)\cdots m_j(f_K)$.

Write $$ \widetilde{U} = \sum_{j=1}^J \widetilde{M}_j\cdot(a_j-a_{j-1}),\qquad \widetilde{L} = \sum_{j=1}^J \widetilde{m}_j\cdot(a_j-a_{j-1}) $$ Claim 1: $\widetilde{U}-\widetilde{L} < \epsilon$

Claim 2: All three of $$ U(F,\pi), \quad L(F,\pi), \quad \sum_{j=1}^J f_1(c_j^{(1)}) f_2(c_j^{(2)})\cdots f_J(c_j^{(K)})\cdot (a_j-a_{j-1}) $$ are between $\widetilde{U}$ and $\widetilde{L}$.
Consequently, we obtain $(1), (2), (3)$, as required.

Proof of Claim 1.
The difference $\widetilde{U}-\widetilde{L}$ is written as a sum of $L$ terms. First, fix $j$ between $1$ and $J$. Then \begin{align} \widetilde{M}_j &= M_j(f_1)M_j(f_2)M_j(f_3)\cdots M_j(f_K) \\ & \ge m_j(f_1)M_j(f_2)M_j(f_3)\cdots M_j(f_K) \\ & \ge m_j(f_1)m_j(f_2)M_j(f_3)\cdots M_j(f_K) \\ & \ge \cdots \\ & \ge m_j(f_1)m_j(f_2)\cdots m_n(f_K) = \widetilde{m}_j \end{align} From each row to the next, one $M_j$ changes to an $m_j$. Then \begin{align} \widetilde{M}_j - \widetilde{m}_j &= (M_j(f_1)-m_j(f_1)) M_j(f_2)M_j(f_3)\cdots M_j(f_K) \\ &+ m_j(f_1)(M_n(f_2)-m_j(f_2)))M_j(f_3)\cdots M_j(f_K) \\ &+ \cdots \\&+ m_j(f_1) m_j(f_2)\cdots m_j(f_{K-1})(M_j(f_K)-m_j(f_K)) \\ &\le A^{K-1}\sum_{k=1}^K (M_j(f_k) - m_j(f_k)) \end{align} Now multiply by $a_j-a_{j-1}$ and sum on $j$. The left side is $$ \sum_{j=1}^J (\widetilde{M}_j - \widetilde{m}_j)\cdot(a_j-a_{j-1}) =\widetilde{U} - \widetilde{L}. $$ The right side is \begin{align} A^{K-1}\sum_{k=1}^K &\sum_{j=1}^J (M_j(f_k) - m_j(f_k))\cdot(a_j-a_{j-1}) = A^{K-1}\sum_{k=1}^K \big(U(f_k,\pi) - L(f_k,\pi)\big) \\ & < A^{K-1} K \epsilon' =\epsilon \end{align} This completes the proof of Claim 1.

Proof of Claim 2.
To prove $\widetilde{U} \ge U(F,\pi) \ge \widetilde{L}$ note that $\widetilde{M}_j \ge M_j(F) \ge \widetilde{m}_j$. To prove $\widetilde{U} \ge L(F,\pi) \ge \widetilde{L}$ note that $\widetilde{M}_j \ge m_j(F) \ge \widetilde{m}_j$. To prove $$ \widetilde{U} \ge \sum_{j=1}^J f_1(c_j^{(1)}) f_2(c_j^{(2)})\cdots f_J(c_j^{(K)})\cdot (a_j-a_{j-1}) \ge \widetilde{L} $$ note \begin{align} \widetilde{M}_j &= M_j(f_1)M_j(f_2)\cdots M_j(f_K) \\ &\ge f_1(c_j^{(1)}) f_2(c_j^{(2)})\cdots f_K(c_j^{(K)}) \\ &\ge m_j(f_1)m_j(f_2)\cdots m_j(f_K) = \widetilde{m}_j \end{align} multiply by $a_j-a_{j-1}$ and sum on $j$.


Case 2. arbitrary signs.
Write $f_k = f_k^+ - f_k^-$ in positive and negative parts. Then $f_1 f_2\cdots f_k$ is a linear combination of $2^K$ such sums with nonnegative functions. Both $$ \sum_{j=1}^J f_1(c_j^{(1)}) f_2(c_j^{(2)})\cdots f_K(c_j^{(K)})\cdot (a_j-a_{j-1}) \qquad\text{and}\qquad \int_a^b f_1(x)f_2(x)\cdots f_K(x)\;dx $$ are linear combinations of $2^K$ terms of the same form, but involving only nonnegative functions. Theorem A for $f_1f_2\cdots f_k$ follows from those $2^k$ cases of Theorem A for nonnegative functions.