Why is the covariance of white noise not finite and not a Kronecker delta

correlationcovariancedirac deltaprobability theorystochastic-processes

Suppose we have a Gaussian white noise $f(t)$. Then the covariance $\langle f(t)f(t')\rangle = c\times\delta(t – t')$ for some $c > 0$.

However, since $f(t)$ is a Gaussian random variable (with variance $c$, say).
Then $f(t)^2$ should be a chi-squared variable with one degree of freedom, and should have mean $c$.

As the noise at different times are independent of each other, we should rather have

$\langle f(t)f(t')\rangle = \begin{cases}
c&\text{if }\, t = t^\prime\\
0&\text{if }\, t \neq t^\prime\\
\end{cases}
=c\times\delta_{(t-t^\prime),0}
$
(which is a Kronecker delta, not a Dirac delta).

If we think physically, suppose we have many copies noise generators and we measure $f(t)^2$ at the same time in all of them and take the average. Clearly, it will be finite and approximately equal to $c$.

Why do we have the Dirac delta function in the correlation instead of the Kronecker delta function? Am I missing something?

Please note that this is not a duplicate of this because I am asking about why the covariance (or correlation) of the noise is not finite. Sure, the Fourier transform of the spectral density implies it is a Dirac delta function, but I don't understand how it happens physically.

Best Answer

$<f(t)^2>$ is infinite! Its frequency spectrum is flat. The auto-correlation and the frequency spectrum are Fourier transforms of each other.