Why is $\sum\limits_{k=1}^{\left\lfloor\frac n2\right\rfloor}\sin^2\left((2k-1)\frac\pi n\right)=\frac n4$

sequences-and-seriestrigonometry

I found the relation for $n\geq3$ $$\sum\limits_{k=1}^{\left\lfloor\frac n2\right\rfloor}\sin^2\left((2k-1)\frac\pi n\right)=\frac n4$$But despite my best efforts, I still have no idea as to how to prove it.

Things I've tried:

  1. Adding $\cos^2$ terms. Of course, $\sin^2x+\cos^2x$ and $\cos^2x-\sin^2x$ are both simplifiable, so I thought about adding $\cos^2$ terms to make the sum into $\frac n2$ and hope that the $\sin^2$ and $\cos^2$ terms sum to equal amounts. They don't in the $n$ odd case, so I didn't know what to do with this approach.
  2. Adding more $\sin^2$ terms: Since $\sin^2 x=\sin^2(\pi-x)$, we can add terms to this sum, but honestly, it didn't make the sum any easier to evaluate.

Any help here?

Edit:

Based on the comments, here are my attempts.

$$\sum\limits_{k=1}^{\left\lfloor\frac n2\right\rfloor}\sin^2\left((2k-1)\frac\pi n\right)=\frac12\cdot\left\lfloor\frac n2\right\rfloor-\frac12\sum\limits_{k=1}^{\left\lfloor\frac n2\right\rfloor}\cos\left((2k-1)\frac{2\pi}n\right)$$$$=\frac12\cdot\left\lfloor\frac n2\right\rfloor-\frac12\mathfrak{Re}\left(\sum\limits_{k=1}^{\left\lfloor\frac n2\right\rfloor}\exp\left((2k-1)\frac{2i\pi}n\right)\right)$$How do I finish?

Best Answer

Following your way, by geometric series we have that for $n=2N$

$$\sum\limits_{k=1}^{\left\lfloor\frac n2\right\rfloor}\exp\left((2k-1)\frac{2i\pi}n\right)=\sum\limits_{k=1}^{N}\exp\left((2k-1)\frac{i\pi}N\right)=\\=e^{-\frac{i\pi }N}\sum\limits_{k=1}^{N}\left(e^{\frac{i2\pi}N}\right)^k=e^{-\frac{i\pi }N}\frac{e^{\frac{i2\pi}N}-e^{\frac{i2\pi(N+1)}N}}{1-e^{\frac{i2\pi}N}}=e^{\frac{i\pi }N}\frac{1-e^{i2\pi}}{1-e^{\frac{i2\pi}N}}=0$$

then

$$\frac12\cdot\left\lfloor\frac n2\right\rfloor-\frac12\mathfrak{Re}\left(\sum\limits_{k=1}^{\left\lfloor\frac n2\right\rfloor}\exp\left((2k-1)\frac{2i\pi}n\right)\right)=\frac12 N+0 = \frac n 4$$

For $n=2N+1$

$$\sum\limits_{k=1}^{\left\lfloor\frac n2\right\rfloor}\exp\left((2k-1)\frac{2i\pi}n\right)=\sum\limits_{k=1}^{N}\exp\left((2k-1)\frac{i\pi}{2N+1}\right)=\\ =e^{-\frac{i2\pi }{2N+1}}\sum\limits_{k=1}^{N}\left(e^{\frac{i4\pi}{2N+1}}\right)^k =e^{-\frac{i2\pi }{2N+1}}\frac{e^{\frac{i4\pi}{2N+1}}-e^{\frac{i4\pi(N+1)}{2N+1}}}{1-e^{\frac{i4\pi}{2N+1}}} =\frac{e^{\frac{i2\pi}{2N+1}}-1}{1-e^{\frac{i4\pi}{2N+1}}}=-\frac1{1+e^{\frac{i2\pi}{2N+1}}}$$

and we also have

$$w=-\frac1{1+e^{\frac{i2\pi}{2N+1}}} \implies w+\bar w=-1 \implies \Re(w)=-\frac12$$

indeed

$$w+\bar w=-\frac1{1+e^{\frac{i2\pi}{2N+1}}}-\frac1{1+e^{\frac{-i2\pi}{2N+1}}}=-\frac1{1+e^{\frac{i2\pi}{2N+1}}}-\frac{e^{\frac{i2\pi}{2N+1}}}{1+e^{\frac{i2\pi}{2N+1}}}=-1$$

then

$$\frac12\cdot\left\lfloor\frac n2\right\rfloor-\frac12\mathfrak{Re}\left(\sum\limits_{k=1}^{\left\lfloor\frac n2\right\rfloor}\exp\left((2k-1)\frac{2i\pi}n\right)\right)=\frac12 N+\frac14 = \frac{2N+1}{4}=\frac n 4$$