Why are those inequalities always true

inequalitysummation

Here are two inequalities that i don't know how to explain.

  • $\text{For }n\in\mathbb N^* \text{ and } (a_1,…,a_n)\in(\mathbb R^{+})^n\text{ , }
    \sqrt{\sum_{k=1}^{n}k^2a_k}\le\sum_{k=1}^{n}\sqrt{\sum_{s=k}^{n}a_s}$

  • $\text{For }n\in\mathbb N^* \text{ , } (a_1,…,a_n)\in\mathbb R^n\text{ and }(b_1,…,b_n)\in\mathbb R^n\text{ such that }a_1\le…\le a_n \text{ and } b_1\le…\le b_n , \left(\frac{1}{n}\sum_{k=1}^{n}a_k\right)\left(\frac{1}{n}\sum_{k=1}^{n}b_k\right)\le\left(\frac{1}{n}\sum_{k=1}^{n}a_kb_k\right)$

Why are those inequalities always true?

Best Answer

The second inequality results from multiple applications of the rearrangement inequality, which gives us $$ a_1b_k+a_2b_{k+1}+\cdots+a_{n-k+1}b_n+a_{n-k+2}b_1+\cdots+a_nb_{k-1}\leq a_1b_1+a_2b_2+\cdots+a_nb_n $$ for all $2\leq k\leq n$.

Related Question