Which closed form expression for this series involving Catalan numbers : $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{4^nn^2}\binom{2n}{n}$

calculuscatalan-numbersclosed-formintegrationsummation

Obtain a closed-form for the series: $$\mathcal{S}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{4^nn^2}\binom{2n}{n}$$

From here https://en.wikipedia.org/wiki/List_of_m … cal_series we know that for $\displaystyle{\left| z \right| \le \frac{1}{4}}$ holds $$\sum\limits_{n = 0}^\infty \binom{2n}{n} z^n = \frac{1}{\sqrt {1 – 4z} }$$

Then
\begin{align}
&\sum\limits_{n = 0}^\infty \binom{2n}{n} \frac{{{z^n}}}{{{4^n}}}
= \frac{1}{\sqrt {1 – z} } \\
&\Rightarrow \sum_{n = 1}^\infty \binom{2n}{n} \frac{z^n}{4^n} = \frac{1}{\sqrt {1 – z} } – 1 \\
&\Rightarrow \sum_{n = 1}^\infty \binom{2n}{n} \frac{z^{n – 1}}{4^n}
= \frac{1 – \sqrt {1 – z} }{z \sqrt {1 – z} } \\
&\Rightarrow
\sum\limits_{n = 1}^\infty \binom{2n}{n} \frac{y^n}{n 4^n} = \int_0^y {\frac{{1 – \sqrt {1 – z} }} {{z \sqrt {1 – z} }}dz} = 2\left( \log 2 – \log \left(1 + \sqrt {1 – y} \right) \right) \\
&\Rightarrow \sum_{n = 1}^\infty \binom{2n}{n} \frac{y^{n – 1}}{n 4^n} = 2\left( {\frac{{\log 2 – \log \left( {1 + \sqrt {1 – y} } \right)}}{y}} \right) \\
&\Rightarrow \sum_{n = 1}^\infty \binom{2n}{n} \frac{x^n}{n^2 4^n} = 2 \int_0^x {\frac{{\log 2 – \log \left( {1 + \sqrt {1 – y} } \right)}}{y}dy}
\end{align}

Best Answer

With $S$ the constant to be computed, we have the following explicit yellow expression: $$ \begin{aligned} S&=\sum\frac{(-1)^{n-1}}{4^n\: n^2}\binom{2n}n\\ &=2\int_0^{-1}(\log2 -\log(1+\sqrt{1-y}))\;\frac{dy}y\qquad\text{ (OP formula)} \\ &=2\int_0^1\log\underbrace{\left(\frac{1+\sqrt{1+y}}2\right)}_{=:t}\;\frac{dy}y \\ & =2\int_1^{(1+\sqrt 2)/2=:a}\frac{2t-1}{t(t-1)}\;\log t\;dt = 2\int_1^a\left(\frac{t}{t(t-1)}+\frac{t-1}{t(t-1)}\right) \;\log t\;dt \\ &= 2\int_1^a\frac{\log t}{t-1}\; dt+ 2\int_1^a\frac{\log t}t\; dt \\ &= -2\Bigg[\operatorname{Li}_2(1-t)\Bigg]_1^a+ \Bigg[\log^2 t\Bigg]_1^a \\ &=-2\operatorname{Li}_2(1-a)+\log^2 a =\bbox[yellow]{-2\operatorname{Li}_2\left(\frac{1-\sqrt2}2\right)+\log^2\left(\frac{1+\sqrt2}2\right)}\ . \end{aligned} $$


Numerical checks, here pari/gp

? sum(n=1, 10000, (-1)^(n-1)/4^n/n^2 * gamma(2*n+1)/gamma(n+1)^2)
%40 = 0.42996693557993137159907473218062445342
? 
? 2 * intnum(y=0, 1, log( (1 + sqrt(1+y))/2 ) / y) 
%41 = 0.42996693560813697203703367869938799117

? a = (1 + sqrt(2))/2;
 
? 2 * intnum(t=1, a, (2*t - 1)/t/(t - 1) * log(t))
%43 = 0.42996693560813697203703367869938799116
 
? -2*dilog( (1-sqrt(2))/2 ) + log( (1+sqrt(2))/2 )^2
%44 = 0.42996693560813697203703367869938799117
Related Question