Where is $(z^2+4)^{-1}\text{Log}(z+2i)$ Analytic

complex-analysis

The question states: Where is the function $(z^2+4)^{-1}\text{Log}(z+2i)$ analytic (where Log denotes the principal complex logarithm).

My attempt:

First note that if $z=\pm 2i$, then $(z^2+4)^{-1}$ is not analytic.

Also, we know that Log$(g(z))$ is not analytic if $g(z)\in(-\infty,0]$. So $\text{Log}(z+2i)$ is not analytic iff $$z+2i\in(-\infty,0].$$
But I'm unsure of how to simplify this expression. Do we equate real and imaginary components to determine a condition for $x$ and $y$?

Best Answer

$$ \begin{align} &z+2i\in(-\infty,0] \\ &\implies\Re(z+2i)\in(-\infty,0] \text{ and } \Im(z+2i)=0 \\ &\implies\Re(z)\in(-\infty,0] \text{ and } \Im(z)=-2\\ \end{align} $$

Therefore, $\frac{\operatorname{Log}(z+2i)}{z^2+4}$ is analytic on $$\mathbb C\setminus\{2i\}\setminus\{z~:~ \Re(z)\in(-\infty,0] , \Im(z)=-2\} $$