When is $63\cdot2^x\pm1$ a perfect power

elementary-number-theoryperfect-powers

When is $63\cdot2^x\pm1$ a perfect power?

I noticed that:

$63\cdot2^0+1=2^6$

$63\cdot2^1-1=5^3$

$63\cdot2^8+1=127^2$

Other than $0,1,8$, are there any integer values of $x$ such that $63\cdot2^x\pm1$ is a perfect power?

Note that $63\cdot2^x-1=3$ mod $4$, so $63\cdot2^x-1$ is never a perfect square.

Best Answer

Suppose that $63 \cdot 2^n + 1=a^b$, with $b \geq 2$, $a$ not being a power and $n \geq 8$. Then $a$ is odd.

Assume that $b$ is odd. Then $n=v_2(a^b-1)=v_2(a-1)$, so $a-1 \geq 2^n$ and $63\cdot 2^n=a^b-1 \geq (a-1)^b \geq 2^{nb}$, so that $256^{b-1} \leq 2^{n(b-1)} \leq 63$, hence $b=1$. We get a contradiction.

Assume that $63 \cdot 2^n-1=a^b$ with $b$ odd and $n \geq 6$. Then $n=v_2(a^b+1)=v_2(a+1)$, so $a \geq 2^{n}-1$. Then $2^{n+6} \geq 63 \cdot 2^n = a^b+1 \geq (2^n-1)^b + 1 \geq 2^{b(n-1)}$, so $b(n-1) < n+6 \leq 2(n-1)$, and $b=1$. We get a contradiction.

So by your remark, we must ask when $63 \cdot 2^n=a^2-1$ for some odd $a$ with $n \geq 8$.

One of $a-1$ and $a+1$ is not divisible by $4$ but divides $63 \cdot 2^n$, so $a-1 \leq 63 \cdot 2=126$. Thus $63 \cdot 2^n=a^2-1 \leq 126 \cdot 128$, hence $n \leq 8$.