What’s the measure of the segment $PQ$ in the triangle below

euclidean-geometryplane-geometry

For reference:
NIn figure CQ is bisector, and
PE = EC, AC = b and BC = a. Calculate PQ.(Answer: $\frac{ab}{a+b}$)

enter image description here

My progress:

$(Bissector ~Th.):\triangle ABC:\\ \frac{BQ}{AQ}=\frac{a}{b} \\
By~ proportionality: \frac{BQ}{BQ+AQ}=\frac{a}{a+b}=\frac{BQ}{AB}$

$(Bissector~ Th.):\triangle CEP:\\ \frac{PQ}{EQ}=\frac{CP}{CE}\\
By~ proportionality: \frac{PQ}{PQ+EQ}=\frac{CP}{CE+CP}\implies \frac{PQ}{PE=EC} = \frac{CP}{CE+CP}$

$(Menelaus~ Th.): CEP-AB:\\: a \cdot PQ \cdot AE =BP \cdot EQ \cdot b\implies PQ = \frac{b}{a} \cdot.\frac{BP \cdot EQ}{AE}(I) \\ (Menelaus – Th.): \triangle ABC – PE:\\CE \cdot AQ \cdot BP = AE \cdot BQ \cdot CP \implies \frac{BP}{AE} = \frac{a}{b}\cdot\frac{CP}{CE}(II)\\
(II)in (I): PQ = \frac{CP}{CE} \cdot EQ \implies PQ = \frac{(a+PB) \cdot (b-PQ)}{(b-EA)}$

Best Answer

enter image description here

Draw segment $QR = QP$ then,

$\angle PRQ = \angle PCA \implies AC \parallel QR$. Also, $CQ$ is angle bisector of $\angle ACB$.

So, $ \displaystyle \frac{QR}{AC} = \frac{BQ}{BA} = \frac{BC}{BC+AC} = \frac{a}{a+b}$

$ \displaystyle \implies PQ = QR = \frac{ab}{a+b}$

Related Question