What’s the measure of the $\angle BAC$ in the triangle below

euclidean-geometrygeometryplane-geometry

For reference: In the right triangle $ABC$, right at $B$, the corner $AF$ is drawn such that $AB = FC$ and $\angle ACB = 2 \angle BAF$. Calculate $\angle BAC$.

My progress:

enter image description here

$\triangle ABF: cos(\frac{C}{2}) = \frac{x}{AF}\\
AF^2 = x^2+BF^2\\
\triangle AFC: Law ~of~ cosines:\\
AF^2 = x^2+AC^2-2.x.AC.cosC\\
\triangle ABC:\\
cos C = \frac{BC}{AC} =\frac{x+BC}{AC}\\
x^2+(x+BF)^2 = AC^2\\
Th.Stewart \triangle ABC:\\
AC^2.BF+x^3=AF^2BC+BC.x.BF$

…??

Best Answer

Here is a construction that makes things simple. Extend $CB$ such that $BE = BF = y$

enter image description here

Now $ \displaystyle \angle BAE = \frac{\angle C}{2} \implies \angle CAE = 90^0 - \frac{\angle C}{2}$

And we notice that $\triangle ACE$ is isosceles so $AC = x + 2y$

Applying Pythagoras in $\triangle ABC$,

$(x+2y)^2 = x^2 + (x+y)^2$

$4y^2 = x^2 + y^2 - 2xy = (x-y)^2$

That leads to $x = 3y$ and sides of $\triangle ABC$ are in the ratio $3:4:5$