What are all possible positive integers $k$ such that $k=\frac{a^2+b^2+c^2}{bc+ca+ab}$ for some positive integers $a$, $b$, and $c$

diophantine equationselementary-number-theorynumber theoryquadratic-formsvieta-jumping

This question is inspired by this one. It comes in two parts.

Question 1. Determine all positive integers $k$ such that there are positive integers $a$, $b$, and $c$ such that
$$\frac{a^2+b^2+c^2}{bc+ca+ab}=k\,.\tag{*}$$

Question 2. For each positive integer $k$ discovered in Question 1, what are all triples $(a,b,c)$ of positive integers such that the condition (*) is satisfied?

Here are three values of $k$ that have the required property.

  • Case I: $k=1$. All solutions $(a,b,c)$ are of the form $$(a,b,c)=(n,n,n)$$ where $n$ is a positive integer.

  • Case II: $k=2$. It can be proven by Vieta jumping that each solution $(a,b,c)$ is a permutation of
    $$\big(tm^2,tn^2,t(m+n)^2\big)\tag{#}$$
    for some positive integers $t$, $m$, and $n$ (we can assume that $m$ and $n$ are relatively prime). A proof of this claim can be seen in the hidden portion below.

  • Case III: $k=5$. All solutions can be found in this link.

Are there other values of $k$ with the required property? If so, are there infinitely many of them?

Here is a proof sketch for my claim when $k=2$ if you would like to read. Let $S$ denote the set of solutions $(a,b,c)\in\mathbb{Z}_{>0}^3$ to (*). Define a similarity relation $\sim$ on $S$ which is an equivalence relation on $S$ generated by requiring that each triple $(a,b,c)\in S$ is similar to any permutation of $(a,b,c)$, and that $(a,b,c)$ is similar to $(a,b,2a+2b-c)$, provided that $(a,b,2a+2b-c)$ is also in $S$. Pick an equivalence class $C$ of $S$ induced by $\sim$, and suppose that $(a,b,c)$ is its minimal triple in the sense that $a+b+c$ is the smallest among all triples in $C$ that is not of the form (#). We may assume without loss of generality that $a\leq b\leq c$. Note that either $2a+2b-c\leq 0$ or $(a,b,2a+2b-c)$ is a "smaller" triple than $(a,b,c)$ in $C$ that is not of the form (#). Show that $c=2a+2b$ must holds, and this implies $b=c$. It then follows that $(a,b,c)=(t,t,4t)=\big(1^2t,1^2t,(1+1)^2t\big)$ for some positive integer $t$, and this is a contradiction.

Best Answer

There is such a solution if and only if both $k-1$ and $k+2$ have (well, different) integer expressions as some $u^2 + 3 v^2.$

The justification for that is in several answers I posted at

Find a solution: $3(x^2+y^2+z^2)=10(xy+yz+zx)$

$$ $$ $$ $$

Given $$ p^2 + 3 q^2 = 2 + k, $$ $$ r^2 + 3 s^2 = 4(k-1), $$ we can solve $$ (x^2 + y^2 + z^2) = k (yz + zx + xy) $$ with $$ x = 2 p^2 + 6 q^2 - p r - 3 p s + 3 q r - 3 q s, $$ $$ y = 2 p^2 + 6 q^2 - p r + 3 p s - 3 q r - 3 q s, $$ $$ z = 2 p^2 + 6 q^2 + 2 p r + 6 q s. $$

I did not immediately realize, the process of Vieta Jumping lets us take a mixed solution and create one with all the same $\pm$ sign. Suppose $x < 0,$ $y > 0,$ $z>0.$ We do a single jump: $$ x \mapsto k(y+z) - x, $$ where the new $x$ value is then positive!

The permissible values of your $k$ from 2 to 1000 are

  2      5     10     14     17     26     29     37     50     62
 65     74     77     82     98    101    109    110    122    125
145    149    170    173    190    194    197    209    226    242
245    257    269    290    302    305    314    325    334    362
365    398    401    410    434    437    442    469    482    485
497    509    514    530    554    557    577    590    602    605
626    629    674    677    685    689    701    722    725    730
770    773    785    794    830    842    845    869    874    890
901    917    962    965    973    974    989

These all lead to solutions $(a,b,c) $ where it may be that some variables are negative, some positive.

Let me work up some of the smallest such $k,$ see whether positive solutions appear.

$$ k = 17; \; \; \; (377,17,5) $$

$$ k = 26; \; \; \; (418,13,3) $$

$$ k = 29; \; \; \; (1109,11,27) $$

BY RECIPE .........................................

Mon Jul  6 19:11:55 PDT 2020

      2  ( 1, 1 , 4 )  p 1 q 1 r 1 s 1
      5  ( -1, 5 , 17 )   ( 111, 5 , 17 )  p 2 q 1 r 2 s 2
     10  ( 2, -1 , 5 )   ( 2, 71 , 5 )  p 0 q 2 r 3 s 3
     14  ( -1, 2 , 11 )   ( 183, 2 , 11 )  p 2 q 2 r 2 s 4
     17  ( -13, 23 , 47 )   ( 1203, 23 , 47 )  p 4 q 1 r 4 s 4
     26  ( 3, -2 , 13 )   ( 3, 418 , 13 )  p 1 q 3 r 5 s 5
     29  ( -7, 11 , 89 )   ( 2907, 11 , 89 )  p 2 q 3 r 2 s 6
     37  ( -11, 19 , 31 )   ( 1861, 19 , 31 )  p 6 q 1 r 6 s 6
     50  ( -5, 7 , 76 )   ( 4155, 7 , 76 )  p 2 q 4 r 2 s 8
     62  ( -5, 7 , 22 )   ( 1803, 7 , 22 )  p 4 q 4 r 1 s 9
     65  ( -61, 107 , 155 )   ( 17091, 107 , 155 )  p 8 q 1 r 8 s 8
     74  ( 22, -17 , 109 )   ( 22, 9711 , 109 )  p 1 q 5 r 7 s 9
     77  ( -13, 17 , 233 )   ( 19263, 17 , 233 )  p 2 q 5 r 2 s 10
     82  ( 5, -4 , 41 )   ( 5, 3776 , 41 )  p 3 q 5 r 9 s 9
     98  ( -4, 5 , 29 )   ( 3336, 5 , 29 )  p 5 q 5 r 5 s 11
    101  ( -97, 173 , 233 )   ( 41103, 173 , 233 )  p 10 q 1 r 10 s 10
    109  ( -29, 43 , 97 )   ( 15289, 43 , 97 )  p 6 q 5 r 0 s 12
    110  ( -4, 5 , 83 )   ( 9684, 5 , 83 )  p 2 q 6 r 2 s 12
    122  ( 6, -5 , 61 )   ( 6, 8179 , 61 )  p 4 q 6 r 11 s 11
    125  ( -37, 59 , 105 )   ( 20537, 59 , 105 )  p 10 q 3 r 8 s 12
    145  ( 7, -5 , 19 )   ( 7, 3775 , 19 )  p 0 q 7 r 12 s 12
    149  ( -19, 23 , 449 )   ( 70347, 23 , 449 )  p 2 q 7 r 2 s 14
    170  ( -15, 19 , 82 )   ( 17185, 19 , 82 )  p 5 q 7 r 1 s 15
    173  ( -23, 31 , 97 )   ( 22167, 31 , 97 )  p 10 q 5 r 10 s 14
    190  ( 5, -4 , 23 )   ( 5, 5324 , 23 )  p 0 q 8 r 9 s 15
    194  ( -11, 13 , 292 )   ( 59181, 13 , 292 )  p 2 q 8 r 2 s 16
    197  ( -61, 159 , 101 )   ( 51281, 159 , 101 )  p 14 q 1 r 4 s 16
    209  ( -97, 119 , 611 )   ( 152667, 119 , 611 )  p 8 q 7 r 8 s 16
    226  ( 8, -7 , 113 )   ( 8, 27353 , 113 )  p 6 q 8 r 15 s 15
    242  ( 31, -24 , 115 )   ( 31, 35356 , 115 )  p 1 q 9 r 14 s 16
    245  ( -25, 29 , 737 )   ( 187695, 29 , 737 )  p 2 q 9 r 2 s 18
    257  ( 131, -109 , 755 )   ( 131, 227811 , 755 )  p 4 q 9 r 16 s 16
    269  ( -79, 123 , 227 )   ( 94229, 123 , 227 )  p 14 q 5 r 10 s 18
    290  ( 9, -8 , 145 )   ( 9, 44668 , 145 )  p 7 q 9 r 17 s 17
    302  ( -7, 8 , 227 )   ( 70977, 8 , 227 )  p 2 q 10 r 2 s 20
    305  ( -55, 69 , 293 )   ( 110465, 69 , 293 )  p 8 q 9 r 4 s 20
    314  ( 43, -38 , 469 )   ( 43, 160806 , 469 )  p 4 q 10 r 13 s 19
    325  ( -107, 199 , 235 )   ( 141157, 199 , 235 )  p 18 q 1 r 18 s 18
    334  ( -11, 13 , 82 )   ( 31741, 13 , 82 )  p 6 q 10 r 3 s 21
    362  ( 27, -23 , 178 )   ( 27, 74233 , 178 )  p 1 q 11 r 11 s 21
    365  ( -31, 35 , 1097 )   ( 413211, 35 , 1097 )  p 2 q 11 r 2 s 22
    398  ( -14, 19 , 55 )   ( 29466, 19 , 55 )  p 10 q 10 r 1 s 23
    401  ( -79, 101 , 381 )   ( 193361, 101 , 381 )  p 16 q 7 r 20 s 20
    410  ( -59, 67 , 610 )   ( 277629, 67 , 610 )  p 7 q 11 r 7 s 23
    434  ( -17, 19 , 652 )   ( 291231, 19 , 652 )  p 2 q 12 r 2 s 24
    437  ( -121, 179 , 381 )   ( 244841, 179 , 381 )  p 14 q 9 r 4 s 24
    442  ( -34, 41 , 215 )   ( 113186, 41 , 215 )  p 9 q 11 r 6 s 24
    469  ( -137, 211 , 397 )   ( 285289, 211 , 397 )  p 18 q 7 r 12 s 24
    482  ( -4, 5 , 21 )   ( 12536, 5 , 21 )  p 11 q 11 r 7 s 25
    485  ( -481, 905 , 1037 )   ( 942351, 905 , 1037 )  p 22 q 1 r 22 s 22
    497  ( -313, 407 , 1403 )   ( 899883, 407 , 1403 )  p 16 q 9 r 16 s 24
    509  ( -37, 41 , 1529 )   ( 799167, 41 , 1529 )  p 2 q 13 r 2 s 26
    514  ( 44, -37 , 251 )   ( 44, 151667 , 251 )  p 3 q 13 r 18 s 24
    530  ( 151, -125 , 772 )   ( 151, 489315 , 772 )  p 5 q 13 r 23 s 23
    554  ( -29, 33 , 274 )   ( 170107, 33 , 274 )  p 7 q 13 r 5 s 27
    557  ( -283, 347 , 1613 )   ( 1092003, 347 , 1613 )  p 14 q 11 r 14 s 26
    577  ( -191, 361 , 409 )   ( 444481, 361 , 409 )  p 24 q 1 r 24 s 24
    590  ( -10, 11 , 443 )   ( 267870, 11 , 443 )  p 2 q 14 r 2 s 28
    602  ( 61, -50 , 291 )   ( 61, 211954 , 291 )  p 4 q 14 r 23 s 25
    605  ( -81, 95 , 593 )   ( 416321, 95 , 593 )  p 10 q 13 r 8 s 28
    626  ( 13, -12 , 313 )   ( 13, 204088 , 313 )  p 11 q 13 r 25 s 25
    629  ( -511, 743 , 1661 )   ( 1512627, 743 , 1661 )  p 22 q 7 r 22 s 26
    674  ( 133, -116 , 997 )   ( 133, 761736 , 997 )  p 1 q 15 r 13 s 29
    677  ( -43, 47 , 2033 )   ( 1408203, 47 , 2033 )  p 2 q 15 r 2 s 30
    685  ( -191, 283 , 595 )   ( 601621, 283 , 595 )  p 18 q 11 r 6 s 30
    689  ( 101, -87 , 677 )   ( 101, 536129 , 677 )  p 4 q 15 r 20 s 28
    701  ( -129, 161 , 671 )   ( 583361, 161 , 671 )  p 14 q 13 r 10 s 30
    722  ( -140, 163 , 1063 )   ( 885312, 163 , 1063 )  p 7 q 15 r 1 s 31
    725  ( -211, 323 , 615 )   ( 680261, 323 , 615 )  p 22 q 9 r 14 s 30
    730  ( 14, -13 , 365 )   ( 14, 276683 , 365 )  p 12 q 14 r 27 s 27
    770  ( -23, 25 , 1156 )   ( 909393, 25 , 1156 )  p 2 q 16 r 2 s 32
    773  ( -71, 85 , 451 )   ( 414399, 85 , 451 )  p 10 q 15 r 4 s 32
    785  ( -235, 653 , 369 )   ( 802505, 653 , 369 )  p 28 q 1 r 8 s 32
    794  ( -47, 54 , 391 )   ( 353377, 54 , 391 )  p 11 q 15 r 10 s 32
    830  ( -9, 10 , 103 )   ( 93799, 10 , 103 )  p 8 q 16 r 7 s 33
    842  ( 15, -14 , 421 )   ( 15, 367126 , 421 )  p 13 q 15 r 29 s 29
    845  ( -15, 19 , 73 )   ( 77755, 19 , 73 )  p 22 q 11 r 26 s 30
    869  ( -49, 53 , 2609 )   ( 2313327, 53 , 2609 )  p 2 q 17 r 2 s 34
    874  ( 41, -37 , 434 )   ( 41, 415187 , 434 )  p 3 q 17 r 15 s 33
    890  ( 97, -89 , 1330 )   ( 97, 1270119 , 1330 )  p 5 q 17 r 17 s 33
    901  ( 181, -149 , 871 )   ( 181, 948001 , 871 )  p 6 q 17 r 30 s 30
    917  ( -859, 1415 , 2201 )   ( 3316731, 1415 , 2201 )  p 26 q 9 r 14 s 34
    962  ( -65, 76 , 471 )   ( 526279, 76 , 471 )  p 14 q 16 r 13 s 35
    965  ( 245, -223 , 2879 )   ( 245, 3014883 , 2879 )  p 10 q 17 r 28 s 32
    973  ( -61, 155 , 101 )   ( 249149, 155 , 101 )  p 30 q 5 r 0 s 36
    974  ( -13, 14 , 731 )   ( 725643, 14 , 731 )  p 2 q 18 r 2 s 36
    989  ( -277, 411 , 857 )   ( 1254329, 411 , 857 )  p 22 q 13 r 8 s 36


Mon Jul  6 19:11:55 PDT 2020
Related Question