Weak and weak* convergence on Banach spaces

banach-spacesweak-convergence

I'm trying to understand weak and weak* convergence. These two statements are used in a proof of a theorem.

Let $(X, \vert \vert \cdot \vert \vert_X )$ and $(Y, \vert \vert \cdot \vert \vert_Y )$ be Banach spaces.

(1) $(x_n)_n$ converges in $X$ to $x \in X$. If

$ \ x^*_n \overset{w^*}{\underset{n \rightarrow \infty}{\rightarrow}} x^* \in X^*$,

then $lim_{n \rightarrow \infty} \langle x_n, x_n^* \rangle = \langle x, x^* \rangle.$ Why does this equotion hold? And why it does not if $x_n \overset{w}{\underset{n \rightarrow \infty}{\rightarrow}} x$?

(2) $(x_n)_n$ converges weakly in $X$ to $x \in X$. If $(x_n^*) \in X^*$ converges to $x^*$, then $lim_{n \rightarrow \infty} \langle x_n, x_n^* \rangle = \langle x, x^* \rangle.$ Same here: Why does it hold? And why it does not if $x^*_n \overset{w^*}{\underset{n \rightarrow \infty}{\rightarrow}} x^*$?

Best Answer

If $x_n^{*} \to x^{*}$ in weak* topology and $x_n \to x$ in the norm then $$|x_n^{*}(x_n) - x^{*}(x)| \leq |x_n^{*}(x_n) - x_n^{*}(x)|+|x_n^{*}(x) - x^{*}(x)|$$ $$ \leq \|x_n^{*}\| ||x_n-x\|+|x_n^{*}(x) - x_n^{*}(x)|.$$ The second term tends to $0$ by weak* convergence of $(x_n^{*})$ and the first term tends to $0$ because $\|x_n^{*}\|$ is bounded.

For a counter-example when we only have weak convergence of $(x_n)$ consider a Hilbert space with orthonormal basis $(e_n)$. Take $x_n=x_n^{*}=e_n$ and $x=x^{*}=0$.

2) is proved similarly.

Related Question