Wallis integral and gamma function

factorialintegrationpi

I would like to ask if anyone would help me to explain how to reach the following relation.
\begin{equation}
\int_0^1 \left( 1-x^{\frac{1}{p}} \right)^q dx= \frac{p!\,q!}{(p+q)!}
\end{equation}

If we substitute one half for p and q
\begin{equation}
\int_0^1 \sqrt{ 1-x^2} dx = \frac{\pi}{4}
\end{equation}

then
\begin{equation}
\frac{p!\,q!}{(p+q)!} \rightarrow (1/2)!^2 \rightarrow (1/2)! = \frac{\sqrt{\pi}}{2}
\end{equation}

I just proved that one half of the factorial is $\frac{\sqrt{\pi}}{2}$.

Thank you in advance.

Best Answer

Do the substitution $x=t^p$ to get \begin{eqnarray*} p \int_0^1 t^{p-1}(1-t)^q dt. \end{eqnarray*} This is the beta function ... https://en.wikipedia.org/wiki/Beta_function