Verify Stokes’ theorem by evaluating both the line and the surface integrals.

multivariable-calculusstokes-theorem

Verify Stokes' theorem by evaluating both sides of the equation for $\overrightarrow F = y^2 \hat i + x \hat j + z^2 \hat k,$ where the surface $S$ is the circular paraboloid described by $z=x^2+y^2$ with $0 \leq z \leq 1.$

What we need to verify is that $$\int_C \overrightarrow F\ \cdot d\overrightarrow r = \int \int_S (\overrightarrow {\nabla} \times \overrightarrow F ) \cdot \hat n\ dS.$$

Where $C$ is the circle $x^2+y^2=1,z=1$ and $S$ is the surface of the circular paraboloid.

For the line integral over $C$ we first parameterize $C$ by $\overrightarrow r (t) = \cos t \hat i + \sin t \hat j + \hat k,$ where $0 \leq t \leq 2 \pi.$ Then the line integral simplifies to $$\int_{0}^{2 \pi} \left (\cos^2 (t) – \sin^3 (t) \right )\ dt$$ which evaluates to $\pi.$

Can anybody help me evaluating the surface integral? Any help will be highly appreciated.

Thank you very much.

EDIT $:$ I find that the surface integral simplifies to $$\int\int_S \frac {2y-1} {\sqrt {4z+1}}\ dS.$$ How do I proceed now?

Best Answer

Given vector field $$ \vec F = y^2 \hat i + x \hat j + z^2 \hat k$$ $$\Rightarrow \nabla \times \vec F = (1 - 2y) \hat k $$

Generally, $$ \hat n dS = \bigg( - \cfrac{ \partial z}{ \partial x} \hat i - \cfrac{ \partial z}{ \partial y} \hat j + \hat k \bigg) dA$$

Putting this all, $$ \iint_S ( \nabla \times \vec F) \cdot \hat n dS = \iint_A (1 - 2y) dA$$

On using polar coordinates, $dA = r dr d \theta, y = r \sin \theta$ and $ r \in [0,1] , \theta \in [0,2 \pi] $

The required integral becomes, $$\int^{2 \pi}_0 \int^1_0 (1 - 2 r \sin \theta ) r dr d\theta = \pi $$ QED