Using first principles find derivative of ln(sec(x))

calculusderivativeslimits

The question is to use first principles only.

Thus I started with the same and got

$$
y = \ln(\sec(x))
$$

$$
\frac{dy}{dx} = \lim_{h\to 0} \frac{\ln(\sec(x+h)) – \ln(\sec(x))}{h}
$$

after this I do not understand how do I eliminate the $h$ in the denominator. I tried to implement $\ln(A) – \ln(B) = \ln\bigl(\frac{A}{B}\bigr)$ which ultimately led to

$$
\frac{dy}{dx} = \lim_{h\to 0} \frac{\ln\bigl(\frac{\sec(x+h)}{\sec(x)}\bigr)}{h}
$$

here I converted $\sec()$ to $\cos()$

$$
\frac{dy}{dx} = \lim_{h\to 0} \frac{\ln\bigl(\frac{\cos(x)}{\cos(x+h)}\bigr)}{h}
$$

Still I cannot proceed further.

Best Answer

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(\sec(x+h)) -\ln(\sec(x))}{h} $$

Using $\ln(A) - \ln(B) = \ln(\frac{A}{B})$

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(\frac{\sec(x+h)}{\sec(x)})}{h} $$

coverting $\sec(x)$ to $\cos(x)$ using $\cos(x) = \frac{1}{\sec(x)}$

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(\frac{\cos(x)}{\cos(x+h)})}{h} $$

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x)}{\cos(x+h)}-1)}{h} $$

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x) - \cos(x+h)}{\cos(x+h)})}{h} $$

multiplying and dividing by $\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}$

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x) - \cos(x+h)}{\cos(x+h)})}{h}\frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}} $$

repositioning

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x) - \cos(x+h)}{\cos(x+h)})}{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}\frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{h} $$

seperating limit

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x) - \cos(x+h)}{\cos(x+h)})}{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}\lim_{h\to0} \frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{h} $$

As $h$ approaches 0 so does $\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}$ as the numerator beging to approach $0$. ($\cos(x) - \cos(x)$)

let us assume $t = \frac{\cos(x)-\cos(x+h)}{\cos(x+h)}$ and hence t approaches $0$ when $h$ approaches $0$

hence equation turns out to be

$$ \frac{d}{dx}\ln\sec(x) = \lim_{t\to0} \frac{\ln(1+t)}{t} \lim_{h\to0} \frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{h} $$

Using the standard limit $\lim_{x\to0} \frac{ln(x+1)}{x} = 1$

Therefore

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{h} $$

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\cos(x)-\cos(x+h)}{h\cos(x+h)} $$

Applying $\cos(A) - \cos(B) = -2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})$

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{-2\sin(\frac{2x+h}{2})\sin(\frac{-h}{2})}{h\cos(x+h)} $$

Bringing the $-2$ down

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\sin(\frac{2x+h}{2})\sin(\frac{-h}{2})}{\frac{-h}{2}\cos(x+h)} $$

rearranging

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\sin(\frac{2x+h}{2})}{\cos(x+h)} \lim_{h\to0} \frac{\sin(\frac{-h}{2})}{\frac{-h}{2}} $$

Using standard limit $\lim_{x\to0} \frac{sin(x)}{x} = 1$

Therefore

$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\sin(\frac{2x+h}{2})}{\cos(x+h)} $$

Putting $h = 0$

$$ \frac{d}{dx}\ln\sec(x) = \frac{\sin(\frac{2x}{2})}{\cos(x)} $$

$$ \frac{d}{dx}\ln\sec(x) = \frac{\sin(x)}{\cos(x)} $$

$$ \frac{d}{dx}\ln\sec(x) = \tan(x) $$