Use the definition of limit to prove that $\lim_{x \to 0} \frac{x}{x+1}=0$

calculusepsilon-deltalimitsreal-analysis

Use the definition of limit to prove that $\lim_{x \to 0} \dfrac{x}{x+1}=0$

My attempt:

Let $\epsilon >0$ then I need to find $\delta>0$ such that if $0<|x|<\delta$ then $\left| \dfrac{x}{x+1} \right| < \epsilon$

What I was thinking is that, to get a $\delta$ that satisfies the definition, I should see what $\epsilon$ satisfies $|x|<\epsilon |x+1|$ and then I could define $\delta$ in terms of such an $\epsilon$.

If $\epsilon =1$ then: $0\leq|x|<|x+1|$ implies that $x^2 < x^2+2x+1$ and then $x>-\dfrac{1}{2}$. In particular, if $-\dfrac{1}{2}<x<\dfrac{1}{2} \Rightarrow |x|<\dfrac{1}{2} \Rightarrow \dfrac{1}{2} < x+1<\dfrac{3}{2}$ so that $|x+1|=x+1$ and then $\dfrac{1}{2}<|x+1| \Rightarrow \dfrac{1}{2|x+1|}<1$. Since $|x|<\dfrac{1}{2}$, then $\left| \dfrac{x}{x+1}\right| = \dfrac{|x|}{|x+1|} <\dfrac{1}{2|x+1|}<1$.
So $\delta=\dfrac{\epsilon}{2}$ stisfies the definition.

If $\epsilon \neq 1$ then:

$0 \leq |x|<\epsilon |x+1|$ Implies that: $x^2<{\epsilon}^2(x^2+2x+1) \Rightarrow (\epsilon ^2-1)x^2+2 \epsilon ^2x + \epsilon ^2 > 0$.

If $0< \epsilon <1 \Rightarrow \epsilon^2-1<0 \Rightarrow x^2 + \dfrac{2 \epsilon^2}{\epsilon^2-1}x+\dfrac{\epsilon^2}{\epsilon^2-1}<0 \Rightarrow \left(x+ \dfrac{\epsilon}{\epsilon-1} \right) \left(x+ \dfrac{\epsilon}{\epsilon+1} \right) < 0$

Let $ x_1 = -\dfrac{\epsilon}{\epsilon-1}$, $x_2=-\dfrac{\epsilon}{\epsilon+1}$. We see that $x_1 >0>x_2$. Then solving the inequality for $x$ we would have $x_2=-\dfrac{\epsilon}{\epsilon+1} < x < -\dfrac{\epsilon}{\epsilon-1} = x_1$.

I am expecting to get something like: $-\phi(\epsilon) < x < \phi(\epsilon) \Rightarrow |x|< \phi(\epsilon)$ on each case so that $\delta = \phi(\epsilon)$ satisfies the definition, but I don't know how to continue here. Could someone give me a hint? Maybe there is a simpler way to approach the exercise.

Best Answer

Suppose $\delta < \min\{\frac12, \frac{\epsilon}{2}\}$. Then $|x + 1| \ge \min\{\frac12, 1 - \frac{\epsilon}{2}\} \ge \frac12$ so that $\frac{|x|}{|x+1|} \le 2\delta < \epsilon$.

Related Question